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Physical motivation

@ A simple experiment: light propagation in spacetime (M, g).
e A supernova occurs at some “beacon” event xy € M.
e Light from the supernova follows a null geodesic ~ in M.
e An astronomer observes the light at another event x € M.
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Physical motivation

@ A simple experiment: light propagation in spacetime (M, g).
e A supernova occurs at some “beacon” event xy € M.
e Light from the supernova follows a null geodesic ~ in M.
e An astronomer observes the light at another event x € M.

@ The measured data:

e Light intensity: photon rate measured with local clock.
@ Spectrum: photon frequency measured with local clock.
o Location of the source: direction of incoming light in local frame.

@ Mathematical description of the measured data:

e General covariance: Physical quantities are tensors.
e Tensor components are measured with respect to local frame.
e No measurement without a frame.

= Consider observer frames as more fundamental than spacetime.
= Spacetime emerges from equivalence classes of observer frames.
@ Geometric theory based on this assumption?
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Why Cartan geometry on observer space?

@ Quantum gravity may suggest breaking of general covariance:

e Loop quantum gravity
@ Spin foam models
e Causal dynamical triangulations
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Why Cartan geometry on observer space?

@ Quantum gravity may suggest breaking of general covariance:
e Loop quantum gravity
@ Spin foam models
e Causal dynamical triangulations

@ Possible implications: Existence of. ..

o ...preferred observers / timelike vector fields.
o ...preferred spatial foliations of spacetime.
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e Breaking of Copernican principle.
o No observation of (strongly) broken symmetry.
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Why Cartan geometry on observer space?

@ Quantum gravity may suggest breaking of general covariance:

e Loop quantum gravity

@ Spin foam models

o Causal dynamical triangulations

@ Possible implications: Existence of. ..
o ...preferred observers / timelike vector fields.
o ...preferred spatial foliations of spacetime.
@ Problems:
e Breaking of Copernican principle.
o No observation of (strongly) broken symmetry.
@ Solution:

o Consider space O of all allowed observers.

e Describe experiments on observer space instead of spacetime.
= Observer dependence of physical quantities follows naturally.
= No preferred observers.

o Geometry of observer space modeled by Cartan geometry.
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Why Finsler geometry of spacetimes?

@ Finsler geometry of space widely used in physics:

e Approaches to quantum gravity
o Electrodynamics in anisotropic media
e Modeling of astronomical data
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Why Finsler geometry of spacetimes?

@ Finsler geometry of space widely used in physics:
e Approaches to quantum gravity
o Electrodynamics in anisotropic media
e Modeling of astronomical data
@ Finsler geometry generalizes Riemannian geometry:
o Clock postulate: proper time equals arc length along trajectories.
o Geometry described by Finsler metric.
o Well-defined notions of connections, curvature, parallel transport. ..
@ Finsler spacetimes are suitable backgrounds for:
o Gravity
e Electrodynamics
o Other matter field theories
@ Possible explanations of yet unexplained phenomena:
e Fly-by anomaly
o Galaxy rotation curves
o Accelerating expansion of the universe
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© Cartan geometry on observer space
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Frame bundles vs. homogeneous spaces

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M.
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Frame bundles vs. homogeneous spaces

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M.
@ Split of the tangent spaces T,P:
o Local infinitesimal Lorentz transforms:
@ Only change local frame.
@ Leave base point x = 7(p) invariant.
= Tangent vectors to fibers 7' (x).
o Infinitesimal translations:
@ Infinitesimal change of base point x.
@ Frame is “unchanged” ~~ parallely transported.
= Orthogonal to infinitesimal Lorentz transforms.
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Frame bundles vs. homogeneous spaces

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M.
@ Split of the tangent spaces TpP = g:
o Local infinitesimal Lorentz transforms € h:
@ Only change local frame.
@ Leave base point x = 7(p) invariant.
= Tangent vectors to fibers 7' (x).
o Infinitesimal translations € 3 = g/b:
@ Infinitesimal change of base point x.
@ Frame is “unchanged” ~~ parallely transported.
= Orthogonal to infinitesimal Lorentz transforms.
@ Description using Lie algebras:
e Poincaré algebra g.
o Lorentz algebra h C g.
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Frame bundles vs. homogeneous spaces

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M is principal H-bundle.
@ Split of the tangent spaces T,P = g:
o Local infinitesimal Lorentz transforms € :
@ Only change local frame.
@ Leave base point x = 7(p) invariant.
= Tangent vectors to fibers 7' (x).
o Infinitesimal translations € 3 = g/b:
@ Infinitesimal change of base point x.
@ Frame is “unchanged” ~~ parallely transported.
= Orthogonal to infinitesimal Lorentz transforms.
@ Description using Lie algebras:
e Poincaré algebra g.
o Lorentz algebra h C g.
@ Corresponding Lie groups:
e Frame bundle P “locally looks like” Poincaré group G.
e Fibers 7—'(x) “look like” Lorentz group H.
= Spacetime M “locally looks like” homogeneous space G/H.
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Frame bundles vs. homogeneous spaces

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle = : P — M is principal H-bundle.
@ Split of the tangent spaces TpP = g:
o Local infinitesimal Lorentz transforms € §:
@ Only change local frame.
@ Leave base point x = 7(p) invariant.
= Tangent vectors to fibers 7' (x).
o Infinitesimal translations € 3 = g/b:
@ Infinitesimal change of base point x.
@ Frame is “unchanged” ~~ parallely transported.
= Orthogonal to infinitesimal Lorentz transforms.
@ Description using Lie algebras:
e Poincaré algebra g.
o Lorentz algebra h C g.
@ Corresponding Lie groups:
e Frame bundle P “locally looks like” Poincaré group G.
e Fibers 7—'(x) “look like” Lorentz group H.
= Spacetime M “locally looks like” homogeneous space G/H.

= Geometry encoded in mapping between T,P and g.
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The hamster ball

@ Consider a hamster ball on a two-dimensional surface:
e Two-dimensional Riemannian manifold (M, g).
e Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
e Hamster position and orientation marks frame p € P.
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e Two-dimensional Riemannian manifold (M, g).
e Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
e Hamster position and orientation marks frame p € P.
@ Degrees of freedom of the hamster € T,P:
e Rotations around its position x = 7(p).
e “Rolling without slippling” over M.
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The hamster ball

@ Consider a hamster ball on a two-dimensional surface:
e Two-dimensional Riemannian manifold (M, g).
e Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
e Hamster position and orientation marks frame p € P.

@ Degrees of freedom of the hamster € T,P ~ ball motions € so(3):
e Rotations around its position x = 7(p): subalgebra so(2).
e “Rolling without slippling” over M: quotient space so(3)/s0(2).
= Surface M modeled by homogeneous space SO(3)/ SO(2) = S2.

= Geometry of M encoded in Hamster ball motion.
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Cartan geometry

@ Choose a Lie group G with a closed subgroup H C G.
@ Choose a principal H-bundle 7 : P — M with dim P = dim G.
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Cartan geometry

@ Choose a Lie group G with a closed subgroup H C G.
@ Choose a principal H-bundle 7 : P — M with dim P = dim G.
@ For each point p € P with 7(p) = x identify:

TpP <—Tpm 1(X)

|

g=—b
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Cartan geometry

@ Choose a Lie group G with a closed subgroup H C G.
@ Choose a principal H-bundle 7 : P — M with dim P = dim G.
@ For each point p € P with 7(p) = x identify:

TpP <—Tpm 1(X)

APJ s

g=—2b

= Cartan connection A € Q'(P, g): 1-form on P with values in g.
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Cartan geometry

@ Choose a Lie group G with a closed subgroup H C G.
@ Choose a principal H-bundle 7 : P — M with dim P = dim G.
@ For each point p € P with 7(p) = x identify:

TpP <—Tprm (X

A,,j jAp

g~—2b

= Cartan connection A € Q'(P, g): 1-form on P with values in g.
= Fundamental vector fields A : g — I'(TP) as “inverse” of A.
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Cartan geometry

@ Choose a Lie group G with a closed subgroup H C G.
@ Choose a principal H-bundle 7 : P — M with dim P = dim G.
@ For each point p € P with 7(p) = x identify:

TpP <—Tprm (X

A,,j jAp

g~—2b

= Cartan connection A € Q'(P, g): 1-form on P with values in g.
= Fundamental vector fields A : g — I'(TP) as “inverse” of A.
= Geometry of M encoded in Aresp. A.
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Example: Cartan geometry of spacetime

@ Choose Lie groups:

o Let
SOy(4,1) A>0

G=1{1S00(3,1) A=0, H=S0(3,1).
S00(3,2) A<0

= Coset spaces G/H are the maximally symmetric spacetimes.
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Example: Cartan geometry of spacetime

@ Choose Lie groups:

o Let
SOy(4,1) A>0

G=1{1S00(3,1) A=0, H=S0(3,1).
S00(3,2) A<0

= Coset spaces G/H are the maximally symmetric spacetimes.
@ Choose principal H-bundle:

e Let (M, g) be a Lorentzian manifold.
o Let P be the oriented time-oriented orthonormal frames on M.
= 7 : P — Mis a principal H-bundle.
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Example: Cartan geometry of spacetime

@ Choose Lie groups:
o Let
SOo(4,1) A>0
G=141S00(3,1) A=0, H=80((3,1).
S00(3,2) A<O

= Coset spaces G/H are the maximally symmetric spacetimes.
@ Choose principal H-bundle:
e Let (M, g) be a Lorentzian manifold.

@ Let P be the oriented time-oriented orthonormal frames on M.
= 7 : P — Mis a principal H-bundle.

@ Choose Cartan connection:
@ g = h & ; splits into direct sum.
e Lete € Q'(P,;) be the solder form of 7 : P — M.
e Letw € Q'(P,h) be the Levi-Civita connection.
= A=w+ec Q(P,g)is a Cartan connection.
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Example: Cartan geometry of spacetime
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o Let
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G=141S00(3,1) A=0, H=80((3,1).
S00(3,2) A<O

= Coset spaces G/H are the maximally symmetric spacetimes.
@ Choose principal H-bundle:
e Let (M, g) be a Lorentzian manifold.

@ Let P be the oriented time-oriented orthonormal frames on M.
= 7 : P — Mis a principal H-bundle.

@ Choose Cartan connection:
@ g = h & ; splits into direct sum.
e Lete € Q'(P,;) be the solder form of 7 : P — M.
e Letw € Q'(P,h) be the Levi-Civita connection.
= A=w+ec Q(P,g)is a Cartan connection.

= Metric g can be reconstructed from Cartan geometry.
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Example: Cartan geometry of observer space

@ Choose Lie groups: [s. Gielen, D. Wise '12]
o Let
SOo(4,1) A>0
G=1{1S00(3,1) A=0, K=S0(3).
S06(3,2) A<O

= Coset spaces G/K are the maximally symmetric observer spaces.
@ Choose principal K-bundle:
e Let (M, g) be a Lorentzian manifold.
o Let O be the future unit timelike vectors on M.
o Let P be the oriented time-oriented orthonormal frames on M.
= 7: P — Ois aprincipal K-bundle.
@ Choose Cartan connection:
e g = h & splits into direct sum.
e Let e € Q'(P,3) be the solder form of 7 : P — M.
e Letw € Q'(P, h) be the Levi-Civita connection.
= A=w+ec Q'(P,g)is a Cartan connection.

= Metric g can be reconstructed from Cartan geometry.
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e Finsler spacetimes
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The clock postulate

@ Proper time along a curve in Lorentzian spacetime:

7= / tg\/ gav(X(1))Xa(t)X0(t)alt
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The clock postulate

@ Proper time along a curve in Lorentzian spacetime:

b
r= [ gt

@ Finsler geometry: use a more general length functional:
b
T = F(x(t), x(t))dt.
]
@ Finsler function F: TM — R*.
@ Parametrization invariance requires homogeneity:

F(x,\y) =AF(x,y) VYA>0.
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Definition of Finsler spacetimes

@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
= Finsler metric with Lorentz signature:

10 0

F L =

= Notion of timelike, lightlike, spacelike tangent vectors.
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Definition of Finsler spacetimes

@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
= Finsler metric with Lorentz signature:

10 0

F L =

= Notion of timelike, lightlike, spacelike tangent vectors.
@ Unit vectors y € TxM defined by

F2(x,y) = ghp(x,¥)y2y? =1.

= Set Qy C TyM of unit timelike vectors at x € M.
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Definition of Finsler spacetimes

@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
= Finsler metric with Lorentz signature:

10 0

F L =

= Notion of timelike, lightlike, spacelike tangent vectors.
@ Unit vectors y € TxM defined by

F2(x,y) = ghp(x,¥)y2y? =1.

= Set Q, C TyM of unit timelike vectors at x € M.
@ Q, contains a closed connected component Sy C Q.
~ Causality: Sy corresponds to physical observers.
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e From Finsler geometry to Cartan geometry
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Observer space

@ Recall from the definition of Finsler spacetimes:

o Set Qy C TyM of unit timelike vectors at x € M.
e Physical observers correspond to Sy C Q.

@ Definition of observer space:

o= Js..

XeM
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Observer space

@ Recall from the definition of Finsler spacetimes:

o Set Qy C TyM of unit timelike vectors at x € M.
e Physical observers correspond to Sy C Q.

@ Definition of observer space:

o= s

XeM

@ Tangent vectors y € Sy satisfy g&, (x, y)yay? = 1.
= Complete y = f, to a frame f; with g, (x, y) 2P = —;.
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Observer space

@ Recall from the definition of Finsler spacetimes:

o Set Qy C TyM of unit timelike vectors at x € M.
e Physical observers correspond to Sy C Q.

@ Definition of observer space:

o= s

XeM

@ Tangent vectors y € Sy satisfy gf, (x, y)y2y? = 1.

= Complete y = f, to a frame f; with g, (x, y)fafP = —n;.
@ Let P be the space of all observer frames.

= m: P — Qs a principal SO(3)-bundle.

@ In general no principal SOy(3,1)-bundle 7 : P — M.
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Construction of the Cartan connection

@ Need to construct A € Q'(P, g).
@ Recall that

g = b @ 3
A= w + e

= Need to construct w € Q'(P,h) and e € Q' (P, 3).

—~~

Manuel Hohmann (Tartu Ulikool) Finsler vs. Cartan 13. November 2013



Construction of the Cartan connection

@ Need to construct A € Q'(P, g).

@ Recall that
g = b @ 3
A= w + e

= Need to construct w € Q'(P,h) and e € Q' (P, 3).
@ Definition of e: Use the solder form.
Let w € T 1P be atangent vector.
Differential of the projection 7 : P — M yields 7.(w) € T, M.
View frame f as a linear isometry f : 3 — T,M.
Solder form given by
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Construction of the Cartan connection

@ Need to construct A € Q'(P, g).
@ Recall that

= Need to construct w € Q'(P,h) and e € Q' (P, 3).
@ Definition of e: Use the solder form.
Let w € T 1P be atangent vector.
Differential of the projection 7 : P — M yields 7.(w) € T, M.
View frame f as a linear isometry f : 3 — T,M.
Solder form given by

e(w) = F1(7.(w)).

@ Definition of w: Use the Cartan linear connection.
e Tangent vector w € T, 5P “shifts” frame f by small amount.
e Compare shifted frame with parallely transported frame.
e Both frames differ by Lorentz transform. (c. peiter, M. wohifarth '11]
e Measure the difference using the original frame:
AfR = effuli(w).

Manuel Hohmann (Tartu Ulikool) Finsler vs. Cartan 13. November 2013



Cartan connection in components

@ Translational part e € Q'(P,3):

i =1 a
e =f"",dx°.
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Cartan connection in components

@ Translational part e € Q'(P, 3):
e = f1dx2.
@ Boost / rotational part w € Q' (P, b):

Wiy =10 [dz;a + fP (dxCFabc + (dxINCy + dfg)cabc)} .
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Cartan connection in components

@ Translational part e € Q'(P, 3):
e = f1dx2.
@ Boost / rotational part w € Q' (P, b):
= 171 [dff 4 12 (dxF2p0 + (dON°g + dff) 7o) | -
@ Coefficients of Cartan linear connection:
N3, = %éb (972 (yP0u0gF? — 05F2) |,
Fpe = %gF i (5bg,§c + dcGp — 5p9§c) )

1 _ - -
C3 = EQF ap <8bg;3:c + 8Cgllp:p - apgllj:c) .
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Cartan connection in components

@ Translational part e € Q'(P, 3):
e = f1dx2.
@ Boost / rotational part w € Q' (P, b):
W= [dz;a + fP (dxCFabc + (dxINCy + dfg)cabc)} .

@ Coefficients of Cartan linear connection:

N3, = %éb (972 (yP0u0gF? — 05F2) |,

Fpe = %gF i (5bg,§c + dcGp — 5p9§c) )

C3, — %gF ap <5bg;3:c + écggp — 5pggc) :

= A =w + eis a Cartan connectionon 7 : P — O.
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Fundamental vector fields

o Leta=2Z+ IWH{ € g.
@ Define the vector field

A(a) — Zif,-a (63 _ fijCabgé) + (h’/f/a _ hiOfibijCabC) 5[3
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Fundamental vector fields

o Leta=2Z+ IWH{ € g.
@ Define the vector field

A(a) — Zif,-a (63 _ fijCabgé) + (h’/f/a _ hiOfibijCabC) 5{3

= Forall p € P we find
A(A(a)(p)) = a.
= Forallw € T,P we find

A(A(w))(p) = w.

= Ap: TpP —gand A, : g — TpP complement each other.
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Fundamental vector fields

o Leta=2Z+ IWH{ € g.
@ Define the vector field

A(a) — Zif,-a (Oa _ fijcabéf:> + (h’/f/a _ hiOfibijCabC) 5[3

= Forall p € P we find
A(A(a)(p)) = a.
= Forallw € T,P we find

A(A(w))(p) = w.

= Ap: TpP —gand A, : g — TpP complement each other.
@ Horizontal vector fields A(3): translations.
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Fundamental vector fields

o Leta=2Z+ IWH{ € g.
@ Define the vector field

A(a) — Zif,-a (63— fijCabgé) + (h’/f/a _ hiOfibijCabc) 5/3

= Forall p € P we find
A(A(a)(p)) = a.
= Forallw € T,P we find

A(A(w))(p) = w.

= Ap: TpP —gand A, : g — TpP complement each other.
@ Horizontal vector fields A(3): translations.
@ Vertical vector fields A(h): Lorentz transforms.
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Time translation

@ Consider the fundamental vector field of the time translator 2,
t=A(Z) = 180, — 1ANPB, &  Wi()=0, €(t)=4d.
@ Integralcurve I : R — P, A — (x(X), f(N\)) of t.

Manuel Hohmann (Tartu Ulikool) Finsler vs. Cartan 13. November 2013 22/36



Time translation

@ Consider the fundamental vector field of the time translator 2,
t=A(Z) = 180, — 1ANPB, &  Wi()=0, €(t)=4d).
@ Integralcurve I : R — P, A — (x(X), f(N\)) of t.

@ From €'(t) = ¢} follows:
=,

= (x, fp) is the canonical lift of a curve from M to O.
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Time translation

@ Consider the fundamental vector field of the time translator 2,
t=A(Z) = 180, — 1ANPB, &  Wi()=0, €(t)=4d.
@ Integralcurve I : R — P, A — (x(X), f(N\)) of t.

@ From €'(t) = &} follows:
=,

= (X, fo) is the canonical lift of a curve from M to O.
@ From w/g(t) = O follows:

0= f(‘)Ely + Nab).(b =X+ Nabkb.

= (x, fy) is a Finsler geodesic.
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Time translation

@ Consider the fundamental vector field of the time translator 2,
t=A(Z) = 180, — 1ANPB, &  Wi()=0, €(t)=4d.
@ Integralcurve I : R — P, A — (x(X), f(N\)) of t.

@ From €'(t) = &} follows:
=,

= (X, fo) is the canonical lift of a curve from M to O.
@ From w'p(t) = O follows:

0= f(‘)Ely + Nab).(b =X+ Nabkb.

= (x, fp) is a Finsler geodesic.
@ From w®s(t) = O follows:

0=1f2+1 (XCFabc + (XN + foc)cabc> = V(x,'fo)fo?-

= Frame f is parallely transported.
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Time translation

@ Consider the fundamental vector field of the time translator 2,
t=A(Z) = 180, — 1ANPB, &  Wi()=0, €(t)=4d.
@ Integralcurve I : R — P, A — (x(X), f(N\)) of t.

@ From €'(t) = &} follows:
=,

= (X, fo) is the canonical lift of a curve from M to O.
@ From w'p(t) = O follows:

0= f(‘)Ely + Nab).(b =X+ Nabkb.

= (x, fy) is a Finsler geodesic.
@ From w®s(t) = 0 follows:

0=1f2+1 (XCFabc + (XN + foc)cabc> = V(x,'fo)fo?-

= Frame f is parallely transported.
= Integral curves of t define freely falling observers.
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Curvature of the Cartan connection

@ Curvature F = F + F, € Q2(P, g) defined by

F= dA+%[A,A].
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Curvature of the Cartan connection

@ Curvature F = F + F; € Q2(P, g) defined by
F=dA+ %[A,A].

@ Translational part F; € Q2(P,3) (“torsion”):
F,=de +w'ine = —f1Cedx? A SES

with 5£6 = NCgdx9 + dfe.
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Curvature of the Cartan connection

@ Curvature F = F, + F, € Q2(P, g) defined by
F=dA+ %[A,A].
@ Translational part F; € Q2(P,3) (“torsion”):
F, = del +w'jne = —F 1 C3cdxP A 5fS

with §£¢ = NCgax? + afe.
@ Boost / rotational part F, € Q2(P, ):

Fy = dw'j + w'k Awk; = _%f*wg':(/?dcabdxa A dx?

+2Pdcabdxa/\(5f(§>+ Sdcab(Sf(‘)a A 5fé)> .
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Curvature of the Cartan connection

@ Curvature F = F + F, € Q2(P, g) defined by
F=dA+ %[A,A].
@ Translational part F; € Q2(P,3) (“torsion”):
F, = del +w'jne = —F 1 C3cdxP A 5fS

with 578 = NCydxd + afe.
@ Boost / rotational part F, € Q3(P, b):

Fy = dw'j + w'k Awk; = —%f*w@-c(/?dcabdxa A dx?
+ 2P 0x® A 61 + S cand 5 A 518

@ RY%p, P9cap, S%:ap: curvature of Cartan linear connection.
= Cartan geometry reproduces well-known Finsler objects.
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e From Cartan geometry to Finsler geometry
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4 Condition 1: boost distribution A(h) must be integrable.
= A(bh) can be integrated to a foliation F with leaf space M.
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4 Condition 1: boost distribution A(h) must be integrable.
= A(bh) can be integrated to a foliation F with leaf space M.
4 Condition 2: foliation F must be strictly simple.
= Leaf space M is a smooth manifold.
= Canonical projection 7 : P — M is a submersion.

@ Canonical projections 7@ = 7’ o 7:

!

P—=0—"=M

™
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Observer trajectories

@ Four-velocity of an observer?
@ Embedding of observer space O into TM?
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Observer trajectories

@ Four-velocity of an observer?

@ Embedding of observer space O into TM?

@ Fundamental vector field t = A(Zy) € ['(TP) of time translation.
@ t transforms trivially under spatial rotations.

Manuel Hohmann (Tartu Ulikool) Finsler vs. Cartan 13. November 2013 26 /36



Observer trajectories

@ Four-velocity of an observer?

@ Embedding of observer space O into TM?

@ Fundamental vector field t = A(Zy) € ['(TP) of time translation.
@ t transforms trivially under spatial rotations.

= Unique vector field r € I'(TO) such that:

P—" -0

|

TP ——TO
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Observer trajectories

@ Four-velocity of an observer?

@ Embedding of observer space O into TM?

@ Fundamental vector field t = A(Zy) € I'(TP) of time translation.
@ t transforms trivially under spatial rotations.

= Unique vector field r € ['(TO) such that:

P—">0

RN

TP——TO0—~TM
@ Integral curves X — o(\) € O of r must be canonical lifts:

a(o(N) = :AW’(O(A)) = m(0(A)) = mi(r(o(})) -

= Uniquely defined map o = 7, or.
4 Condition 3: o must be an embedding.
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Finsler geometry

@ Finsler function must be positively homogeneous of degree one:
F(x,Ay) = [AIF(x,y)

@ Unit timelike condition: F(o(0)) = 1 for all observers o € O.
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Finsler geometry

@ Finsler function must be positively homogeneous of degree one:
F(x,Ay) = [AIF(x,y)

@ Unit timelike condition: F(o(0)) = 1 for all observers o € O.
= Define F(Ao(0)) = |A| on double cone Ro(O).
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Finsler geometry

@ Finsler function must be positively homogeneous of degree one:
F(x,Ay) = [AIF(x,y)

@ Unit timelike condition: F(o(0)) = 1 for all observers o € O.

= Define F(Ao(0)) = |A| on double cone Ro(O).

4 Condition 4: o(O) must intersect each line (x, Ry) at most once.
4 Condition 5: Finsler metric gf, must have Lorentz signature:

1- -
9k = 0a0pF

13. November 2013 27/36
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Finsler geometry

@ Finsler function must be positively homogeneous of degree one:
F(x,Ay) = [AIF(x,y)

@ Unit timelike condition: F(o(0)) = 1 for all observers o € O.

= Define F(Ao(0)) = |A| on double cone Ro(O).

4 Condition 4: o(O) must intersect each line (x, Ry) at most once.
4 Condition 5: Finsler metric gf, must have Lorentz signature:

1- -
9k = 0a0pF

= Finsler spacetime geometry on Ro(O).
@ No Finsler geometry on TM \ Ro(O).
@ Cartan geometry describes only geometry visible to observers.
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e Closing the circle
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Reconstruction of a given Finsler spacetime

@ |dea:

e Start from a Finsler spacetime (M, F).

e Construct a Cartan observer space (7 : P — O, A).
e Construct a new Finsler spacetime (M, F).
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Reconstruction of a given Finsler spacetime

@ |dea:
e Start from a Finsler spacetime (M, F).
e Construct a Cartan observer space (7 : P — O, A).
e Construct a new Finsler spacetime (M F
)

)-
@ Equivalence of Finsler spacetimes (M, F) and (M, F)?
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Reconstruction of a given Finsler spacetime

@ |dea:
e Start from a Finsler spacetime (M, F).
e Construct a Cartan observer space (7 : P — O, A).
e Construct a new Finsler spacetime (M F).

@ Equivalence of Finsler spacetimes (M, F) an

@ There exists a diffeomorphism /:

TM\ /
TM
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Reconstruction of a given Finsler spacetime

@ |dea:
e Start from a Finsler spacetime (M, F).
e Construct a Cartan observer space (7 : P — O, A).
e Construct a new Finsler spacetime (M F
)

@ Equivalence of Finsler spacetimes (M
@ There exists a diffeomorphism pu:

\

O<—O

)-
and (M, F)?

\

@ 4 preserves the Finsler function on timelike vectors.
= Reconstruction of the original Finsler geometry.
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Reconstruction of a given Cartan observer space

@ |dea:
e Start from a Cartan observer space (7 : P — O, A).
e Construct a Finsler spacetime (M, F).
e Construct a new Cartan observer space (7 : P — O, A).
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Reconstruction of a given Cartan observer space

@ |dea:
e Start from a Cartan observer space (7 : P — O, A).
e Construct a Finsler spacetime (M, F).
o Construct a new Cartan observer space (# : P
@ Equivalence of (7 : P — O,A) and (7 : P — O,

3%
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Reconstruction of a given Cartan observer space

@ |dea:
e Start from a Cartan observer space (7 : P — O, A).
e Construct a Finsler spacetime (M, F).

e Construct a new Cartan observer space (7 Af’
@ Equivalence of (7 : P — O,A)and (# : P — O,
@ Only if a “Cartan morphism” y exists:

A(a)

3%

o<~ P =2 TP
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Reconstruction of a given Cartan observer space

@ |dea:
e Start from a Cartan observer space (7 : P — O, A).
e Construct a Finsler spacetime (M, F).

o Construct a new Cartan observer space (# : P — 0, A).
@ Equivalence of (7 : P — O,A) and (7 : P — O, A)?
@ Only if a “Cartan morphism” x exists:

TP~ TO »
‘ x
X O ™
—~TO ™

7 Aa) o

@ Every Cartan morphism x = (x, f) takes the form

x(p) =7'(7(p)), fi(p) = m.(m(A(Z)(P)))
= Simple test for equivalence of (7 : P — O, A) and (7 : P — O, A).
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@ Finsler-Cartan-Gravity
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Gravity from Cartan to Finsler

@ MacDowell-Mansouri gravity on observer space: [s. cieien, 0. wise "12]

SG:/eaﬂ,ytrh(F,,A*Fh)AbaAbﬁAm
(0]

e Hodge operator x on b.
o Non-degenerate H-invariant inner product try on b.
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Gravity from Cartan to Finsler

@ MacDowell-Mansouri gravity on observer space: [s. cieien, 0. wise "12]

SG:/eaﬂ,ytrh(F,,A*Fh)AbaAbﬁAm
(0]

e Hodge operator x on b.
o Non-degenerate H-invariant inner product try on b.

@ Translate terms into Finsler language (with R = dw + %[w,w]):
e Curvature scalar:

[e,e] AxR ~ gF#®RC . dV .
o Cosmological constant:
[e,e] Ax[e,e] ~ dV.
e Gauss-Bonnet term:

R AR ~» ¥R ot Regn dV .
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Gravity from Cartan to Finsler

@ MacDowell-Mansouri gravity on observer space: [s. cieien, 0. wise "12]

SG:/eaﬂ,ytrh(F,,A*Fh)AbaAbﬁAm
(0]

e Hodge operator x on b.
o Non-degenerate H-invariant inner product try on b.

@ Translate terms into Finsler language (with R = dw + %[w,w]):
e Curvature scalar:

[e,e] AxR ~ gF#®RC . dV .
o Cosmological constant:
[e,e] Ax[e,e] ~ dV.
e Gauss-Bonnet term:

R AR ~» ¥R ot Regn dV .

= Gravity theory on Finsler spacetime.
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Gravity from Finsler to Cartan

@ Finsler gravity action: (c. peiter, M. wonitarth '11]
Sg = / d*x d®y \/ —GRZyP .
@)

e Sasaki metric G on O.
o Non-linear curvature R?,,.
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Gravity from Finsler to Cartan

@ Finsler gravity action: (c. peiter, M. wonitarth '11]
Sg = / d*x d®y \/ —GRZyP .
@)

e Sasaki metric G on O.
o Non-linear curvature R?,,.

@ Translate terms into Cartan language:

d*xd®y \/ G = cjigcap, € NE NEKNE N A ADY,
R2py° = bP[A(Za), A(20)] -

Manuel Hohmann (Tartu Ulikool) Finsler vs. Cartan 13. November 2013 33/36



Gravity from Finsler to Cartan

@ Finsler gravity action: (c. peiter, M. wonitarth '11]
Sg = / d*x d®y \/ —GRZyP .
@)

e Sasaki metric G on O.
o Non-linear curvature R?,,.

@ Translate terms into Cartan language:

d*xd®y \/ G = cjigcap, € NE NEKNE N A ADY,
R2py° = bP[A(Za), A(20)] -

= Gravity theory on observer space.
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e Conclusion
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@ Observer space:
o Lift physics from spacetime to the space of observers.
e Describe observer space geometry using Cartan geometry.
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@ Observer space:

o Lift physics from spacetime to the space of observers.

e Describe observer space geometry using Cartan geometry.
@ Finsler spacetime:

e Based on generalized length functional.

o Finsler metric is observer dependent.
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@ Observer space:
o Lift physics from spacetime to the space of observers.
e Describe observer space geometry using Cartan geometry.
@ Finsler spacetime:
e Based on generalized length functional.
o Finsler metric is observer dependent.
@ From Finsler to Cartan:
e Cartan geometry on observer space derived from Finsler geometry.
e Connection calculated from Cartan linear connection.
o Parallely transported observer frames given by the “flow of time”.
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@ Observer space:
o Lift physics from spacetime to the space of observers.
e Describe observer space geometry using Cartan geometry.
@ Finsler spacetime:
e Based on generalized length functional.
o Finsler metric is observer dependent.
@ From Finsler to Cartan:
e Cartan geometry on observer space derived from Finsler geometry.
e Connection calculated from Cartan linear connection.
o Parallely transported observer frames given by the “flow of time”.
@ From Cartan to Finsler:
@ Spacetime can (sometimes) be constructed from Cartan geometry.
o Observer dependent Finsler metric from Cartan connection.
o Observers have timelike four-velocities in TM.
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@ Observer space:
o Lift physics from spacetime to the space of observers.
e Describe observer space geometry using Cartan geometry.
@ Finsler spacetime:
e Based on generalized length functional.
o Finsler metric is observer dependent.
@ From Finsler to Cartan:
e Cartan geometry on observer space derived from Finsler geometry.
e Connection calculated from Cartan linear connection.
o Parallely transported observer frames given by the “flow of time”.
@ From Cartan to Finsler:
@ Spacetime can (sometimes) be constructed from Cartan geometry.
o Observer dependent Finsler metric from Cartan connection.
o Observers have timelike four-velocities in TM.

@ Both constructions complement each other.
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@ Observer space:
o Lift physics from spacetime to the space of observers.
e Describe observer space geometry using Cartan geometry.
@ Finsler spacetime:
e Based on generalized length functional.
o Finsler metric is observer dependent.
@ From Finsler to Cartan:
e Cartan geometry on observer space derived from Finsler geometry.
e Connection calculated from Cartan linear connection.
o Parallely transported observer frames given by the “flow of time”.
@ From Cartan to Finsler:
@ Spacetime can (sometimes) be constructed from Cartan geometry.
o Observer dependent Finsler metric from Cartan connection.
o Observers have timelike four-velocities in TM.
@ Both constructions complement each other.
@ Gravity:
o MacDowell-Mansouri gravity from Cartan to Finsler.
o Finsler gravity from Finsler to Cartan.
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@ Current projects:

e Derive gravitational equations of motion.
e Translate more terms between both languages.
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@ Current projects:

e Derive gravitational equations of motion.

e Translate more terms between both languages.
@ Future projects:

o Consistent matter coupling.
Study of exact solutions.
Effects of deviations from metric geometry?
Geometrodynamics of Finsler spacetimes.
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