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0 Introduction
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@ Metric geometry of spacetime serves multiple roles:
o Causality
o Observers, observables and observations
o Gravity
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@ Metric geometry of spacetime serves multiple roles:
o Causality
o Observers, observables and observations
o Gravity
@ Geometry imposes several conditions:
e Local Lorentz invariance
o General covariance
@ Theories of quantum gravity may break these conditions:
e Loop quantum gravity
e Spin foam networks
e Causal dynamical triangulations
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@ Metric geometry of spacetime serves multiple roles:
o Causality
o Observers, observables and observations
o Gravity

@ Geometry imposes several conditions:
e Local Lorentz invariance
o General covariance

@ Theories of quantum gravity may break these conditions:
e Loop quantum gravity
e Spin foam networks
e Causal dynamical triangulations

= Possible stronger, non-tensorial dependence of physical quantities
on observer’s motion.
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@ Metric geometry of spacetime serves multiple roles:
o Causality
o Observers, observables and observations
o Gravity
@ Geometry imposes several conditions:
e Local Lorentz invariance
o General covariance
@ Theories of quantum gravity may break these conditions:
e Loop quantum gravity
e Spin foam networks
e Causal dynamical triangulations
= Possible stronger, non-tensorial dependence of physical quantities
on observer’s motion.
= More general, non-tensorial, “observer dependent” geometries:
o Finsler spacetimes
e Cartan geometry on observer space

@ How to serve the same roles as metric geometry?
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Why Finsler geometry of spacetimes?

@ Finsler geometry of space widely used in physics:

e Approaches to quantum gravity
o Electrodynamics in anisotropic media
e Modeling of astronomical data
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Why Finsler geometry of spacetimes?

@ Finsler geometry of space widely used in physics:
e Approaches to quantum gravity
o Electrodynamics in anisotropic media
e Modeling of astronomical data
@ Finsler geometry generalizes Riemannian geometry:
o Clock postulate: proper time equals arc length along trajectories.
o Geometry described by Finsler metric.
o Well-defined notions of connections, curvature, parallel transport. ..
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Why Finsler geometry of spacetimes?

@ Finsler geometry of space widely used in physics:
e Approaches to quantum gravity
o Electrodynamics in anisotropic media
e Modeling of astronomical data
@ Finsler geometry generalizes Riemannian geometry:
o Clock postulate: proper time equals arc length along trajectories.
o Geometry described by Finsler metric.
o Well-defined notions of connections, curvature, parallel transport. ..
@ Finsler spacetimes are suitable backgrounds for:
o Gravity
e Electrodynamics
o Other matter field theories
@ Possible explanations of yet unexplained phenomena:
e Fly-by anomaly
e Galaxy rotation curves
o Accelerating expansion of the universe
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Why Cartan geometry on observer space?

@ Quantum gravity suggests breaking of.. .

@ ...local Lorentz invariance.
@ ...general covariance.
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Why Cartan geometry on observer space?

@ Quantum gravity suggests breaking of.. .

@ ...local Lorentz invariance.
@ ...general covariance.

@ Possible breaking of symmetry through. ..

o ...preferred observers / timelike vector fields.
o ...preferred spatial foliations of spacetime.
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Why Cartan geometry on observer space?

@ Quantum gravity suggests breaking of.. .

@ ...local Lorentz invariance.
@ ...general covariance.

@ Possible breaking of symmetry through. ..

o ...preferred observers / timelike vector fields.
o ...preferred spatial foliations of spacetime.

@ Problems:

e Breaking of Copernican principle for observers.
@ No observation of (strongly) broken symmetry.
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Why Cartan geometry on observer space?

@ Quantum gravity suggests breaking of.. .
o ...local Lorentz invariance.
@ ...general covariance.
@ Possible breaking of symmetry through. ..
o ...preferred observers / timelike vector fields.
o ...preferred spatial foliations of spacetime.
@ Problems:
e Breaking of Copernican principle for observers.
@ No observation of (strongly) broken symmetry.
@ Solution:

o Consider space O of all allowed observers.

o Describe experiments on observer space instead of spacetime.
= Observer dependence of physical quantities follows naturally.
= No preferred observers.

o Geometry of observer space modeled by Cartan geometry.
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Geometrical structures

Metric geometry Finsler geometry Cartan geometry

Manifold M Tangent bundle TM Lie group
Lorentzian metricg ~ Geometry function G =1800(3,1)
Orientation L:TM - R Closed subgroup
Time orientation Finsler function K =3S0(3)
F:TM - R Principal K-bundle
Finsler metric g7 (x, y) m:P—0
Cartan non-linear Cartan connection
connection N2, AecQ'(P,g)

Cartan linear
connection V
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Geometrical structures

Metric geometry Finsler geometry Cartan geometry

Manifold M Tangent bundle TM Lie group
Lorentzian metricg ~ Geometry function G =1800(3,1)
Orientation L:TM - R Closed subgroup
Time orientation Finsler function K =30(3)

F:TM - R Principal K-bundle

Finsler metric g7 (x, y) T:P—=0
Cartan non-linear Cartan connection

connection N2, AcQ'(P,g)

Cartan linear
connection V
From metric to Finsler
Coordinates (x2) on M Space O of observer 4-velocities
Coordinates (x4, y4) on TM Space P of observer frames
Define L(x, y) = gap(x)y2yP Define A from connection V

From Finsler to Cartan
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Metric spacetime geometry

@ Ingredients of metric spacetime geometry:
e 4-dimensional spacetime manifold M.
o Metric gap of Lorentzian signature (—, +, +, +).
o Orientation and time orientation of frames.
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Metric spacetime geometry

@ Ingredients of metric spacetime geometry:

e 4-dimensional spacetime manifold M.
o Metric gap of Lorentzian signature (—, +, +, +).
e Orientation and time orientation of frames.

@ Clock postulate: proper time measured by arc length.
= Arc length for curves t — ~(t) € M defined by the metric:

17}
== [ VigaGOrA0 et
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Metric spacetime geometry

@ Ingredients of metric spacetime geometry:

e 4-dimensional spacetime manifold M.
o Metric gap of Lorentzian signature (—, +, +, +).
o Orientation and time orientation of frames.

@ Clock postulate: proper time measured by arc length.
= Arc length for curves t — ~(t) € M defined by the metric:

17}
== [ VigaGOrA0 et

@ Observables are components of tensor fields.
@ Tensor components must be expressed in suitable basis.
= Metric provides notion of orthonormal frames:

gabfiaC'b = nj -
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Basics of Finsler spacetimes

@ Finsler geometry defined by length functional for curve ~:
b
-1 = [ F(y(t).4(1))dt
t
@ Finsler function F : TM — R*.
@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
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Basics of Finsler spacetimes

@ Finsler geometry defined by length functional for curve ~:
b
-1 = [ F(y(t),%(t))dt
t

@ Finsler function F: TM — R*.
@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
@ Introduce manifold-induced coordinates (x2, y?) on TM:

e Coordinates x? on M.

o Define coordinates y2 for y?@ axa e T,M.

e Tangent bundle TTM spanned by {6a = axa,aa = aya}
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Basics of Finsler spacetimes

@ Finsler geometry defined by length functional for curve ~:
b
-1 = [ F(y(t),%(t))dt
t

@ Finsler function F: TM — R*.
@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
@ Introduce manifold-induced coordinates (x2, y?) on TM:

e Coordinates x? on M.

o Define coordinates y2 for y?@ axa e T,M.

e Tangent bundle TTM spanned by {6a =2, 0a= aiya}

@ n-homogeneous functions on TM: f(x, \y) = A\"f(x, y).
@ n-homogeneous smooth geometry function L : TM — R.
= 1-homogeneous Finsler function F = |L|n.
= Finsler metric with Lorentz signature:

1
Gan(X.¥) = 50a06F2(x. ).
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Connections on Finsler spacetimes

@ Cartan non-linear connection:

1- -
N = 235 |9 *(y0500F2 — 9oF?)] .

=- Berwald basis of TTM:
{5a =0a— Nba5b7 5:3} :
= Dual Berwald basis of T*TM:
{dx? 6y? = dy? + N3pdx®}.
= Splits TTM = HTM & VTIM and T*TM = H*TM & V* TM.
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Connections on Finsler spacetimes

@ Cartan non-linear connection:

1- -
N = 235 |9 *(y0500F2 — 9oF?)] .

= Berwald basis of TTM:
{6a= 02— NP23p, 05} .
= Dual Berwald basis of T*TM:
{dx?3,0y? = dy? + N3pdx®} .
= Splits TTM = HTM @ VIMand T*TM = H*TM & V*TM.
@ Cartan linear connection:

V.06 = Fapdc, V5,00 = FeapOc, V5,06 = C%apdc, V5,05 = Caplk ,

1
FCap = EQF (82hy + ObGha — 0a9ks) »

1 _ _ )
Cap = EQF 4(Daghy + Opghy — Dagly) -
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Toy model for Cartan geometry: The hamster ball

@ Consider a hamster ball on a two-dimensional surface:
e Two-dimensional Riemannian manifold (M, g).
e Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
e Hamster position and orientation marks frame p € P.
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Toy model for Cartan geometry: The hamster ball

@ Consider a hamster ball on a two-dimensional surface:
e Two-dimensional Riemannian manifold (M, g).
e Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
e Hamster position and orientation marks frame p € P.
@ Hamster’s degrees of freedom € T,P:
e Rotations around its position x = 7(p).
o “Rolling without slippling” over M.
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Toy model for Cartan geometry: The hamster ball

@ Consider a hamster ball on a two-dimensional surface:
e Two-dimensional Riemannian manifold (M, g).
e Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
e Hamster position and orientation marks frame p € P.
@ Hamster’s degrees of freedom € T,P ~ ball motions € g = s0(3):
o Rotations around its position x = m(p): subalgebra h = s0(2).
o “Rolling without slippling” over M: quotient space 3 = s0(3)/s0(2).
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Toy model for Cartan geometry: The hamster ball

@ Consider a hamster ball on a two-dimensional surface:
e Two-dimensional Riemannian manifold (M, g).
e Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
e Hamster position and orientation marks frame p € P.
@ Hamster’s degrees of freedom € T,P ~ ball motions € g = s0(3):
e Rotations around its position x = 7(p): subalgebra h = so(2).
e “Rolling without slippling” over M: quotient space 3 = so(3)/s0(2).
= Surface M “traced” by S? =~ SO(3)/SO(2) = G/H.
= Geometry of M fully described by Hamster ball motion.
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Cartan geometry of spacetime

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M.
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Cartan geometry of spacetime

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M.
@ Split of the tangent spaces T,P:

e Infinitesimal Lorentz transforms € V,,P.
e Infinitesimal translations € H,P.
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Cartan geometry of spacetime

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M is principal H-bundle.
@ Split of the tangent spaces ToP = g:

g = b + 3

e Infinitesimal Lorentz transforms € V,P = b.
e Infinitesimal translations € H,P = ;.
@ Corresponding split of Poincaré algebra g:
e Lorentz algebra b.
o Translations ;.
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Cartan geometry of spacetime

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M is principal H-bundle.
@ Split of the tangent spaces ToP = g:

Apl\ = wpiA + epLA
g = b + 3

e Infinitesimal Lorentz transforms € V,P = b.
e Infinitesimal translations € H,P = ;.
@ Corresponding split of Poincaré algebra g:
o Lorentz algebra b.
o Translations ;.

@ Cartan connection A= w + e € Q' (P, g).
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Cartan geometry of spacetime

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M is principal H-bundle.
@ Split of the tangent spaces ToP = g:

1]
g = b + 3

e Infinitesimal Lorentz transforms € V,P = b.
e Infinitesimal translations € H,P = ;.
@ Corresponding split of Poincaré algebra g:
o Lorentz algebra b.
o Translations ;.
@ Cartan connection A= w + e € Q' (P, g).

@ Fundamental vector fields A : g — T'(TP) as “inverse” of A.
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Cartan geometry of spacetime

@ Consider Lorentzian manifold (M, g).
@ Orthonormal frame bundle 7 : P — M is principal H-bundle.
@ Split of the tangent spaces ToP = g:

1]
g = b + 3

e Infinitesimal Lorentz transforms € V,P = b.
e Infinitesimal translations € H,P = ;.
@ Corresponding split of Poincaré algebra g:
o Lorentz algebra b.
e Translations 3.
@ Cartan connection A= w + e € Q' (P, g).
@ Fundamental vector fields A : g — T'(TP) as “inverse” of A.

= Geometry of M encoded in A resp. A.
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Cartan geometry of observer space

@ Consider Lorentzian manifold (M, g).
@ Future unit timelike vectors O c TM.
@ Orthonormal frame bundle = : P — O.
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Cartan geometry of observer space

@ Consider Lorentzian manifold (M, g).
@ Future unit timelike vectors O C TM.
@ Orthonormal frame bundle = : P — O is principal K-bundle.
@ Split of the tangent spaces T,P = g:

TP = RoP + ByP + HP + HYP

A

g = & + v + 7 + 3°
Infinitesimal rotations € R, P = ¢.
Infinitesimal Lorentz boosts € B,P = 1.

Infinitesimal spatial translations € H,P = ;.
Infinitesimal temporal translations € HyP = 3.
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Cartan geometry of observer space

@ Consider Lorentzian manifold (M, g).
@ Future unit timelike vectors O C TM.
@ Orthonormal frame bundle = : P — O is principal K-bundle.
@ Split of the tangent spaces T,P = g:

ToP = R,P + ByP + HyP + HIP

p
Ap£ Qpl\ + bpl\ + épl\ + egl\
g = £ + v + 7 + 3

o Infinitesimal rotations € R, P = &.

e Infinitesimal Lorentz boosts € B,P = .

o Infinitesimal spatial translations € H,P = 3.

o Infinitesimal temporal translations € HyP = 3°.
@ Cartan connection A= Q + b+ é+ e® € Q'(P, g).
@ Fundamental vector fields A : g — I'(TP) as “inverse” of A.

= Geometry of M encoded in A resp. A. is. Gielen, 0. Wise 12]
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From metric to Finsler

@ Metric-induced 2-homogeneous geometry function:

L(x,y) = gan(X)y2y®.

= Finsler function F(x,y) = +/|L(x, ).
= Finsler metric

—g(x, for y timelike,
gF(X, y) _ g( .y) y .
alx,y) for y spacelike.
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From metric to Finsler

@ Metric-induced 2-homogeneous geometry function:

L(x,y) = gan(X)y2y®.

= Finsler function F(x,y) = +/|L(x, ).
= Finsler metric

0= {83 oy pmonne
= Cartan non-linear connection:
Nép = Topcy°.
= Cartan linear connection:

Fabc = rabm Cabc =0.
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From Finsler to Cartan

@ Need to construct A € Q'(P, g).

@ Recall that
g = bh @ 3
A= w + e
@ Definition of e: Use the solder form:
e = f1dxa.

@ Definition of w: Use the Cartan linear connection:

Wiy =10 [dfﬁ + fP (dxCFabc + (dxINCy + dfg)cabc)} .
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From Finsler to Cartan

@ Need to construct A € Q'(P, g).
Recall that

g = b &
A= w +
Definition of e: Use the solder form:

e = f1dxa.

3
e

Definition of w: Use the Cartan linear connection:

Wiy =10 [dfﬁ + fP (dxCFabc + (dxINCy + dfg)cabcﬂ .

Leta=2Z; + %hiﬂ'[ij € g.
Fundamental vector fields:

A(a) — Zif,-a <8a _ ’;’bFCabéé) + (hljf/a _ hiOfib);‘cCabc) 5{3
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e Causality
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Causal structure

Metric geometry
SIS

Geometry function:

L = gapy?y®

y2 timelike for L < 0.
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Causal structure

Metric geometry
SIS

Geometry function:

L = gapy?y®

y2 timelike for L < 0.

Finsler geometry

Fundamental geometfy function L
Hessian:

L=-1

1_ _
9ap(X.¥) = 50a06L(x. )

Use sign of L and signature of g*.
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Causal structure

Metric geometry Cartan geometry
SIS

Observer space:

Geometry function:

o= s

XeEM

L = gapy?y®

O contains only future

y2 timelike for L < 0.
elike vectors.

Finsler geometry

Fundamental geometfy function L
Hessian:

1_ _
9ap(X.¥) = 50a06L(x. )

Use sign of L and signature of g*.
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Causality of Finsler spacetimes

@ “Unit timelike condition” required for Finsler spacetimes:
For all x € M the set

Qy = {y c TXM‘|L(X,y)| =1,8ig 0a0pL(X, y) = (€, —¢, —¢, —e)}

with e = L(x, y)/|L(x, y)| contains a non-empty closed connected
component Sy C Q, C TxM.

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 4 June 2014 17 /31



Causality of Finsler spacetimes

@ “Unit timelike condition” required for Finsler spacetimes:
For all x € M the set

Qy = {y c TXM‘|L(X,y)| =1,8ig 0a0pL(X, y) = (€, —¢, —¢, —e)}

with e = L(x, y)/|L(x, y)| contains a non-empty closed connected
component Sy C Q, C TxM. N

= Sy contains L=t
physical
observers.

= RTtS,is
convex cone.
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The observer frame bundle

@ Observer space of a Finsler spacetime:
o Consider all allowed observer tangent vectors:

o=J s

xeM

e Tangent vectors y € S satisfy gf, (x, y)yay? = 1.
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The observer frame bundle

@ Observer space of a Finsler spacetime:
o Consider all allowed observer tangent vectors:

o=J s

xeM

e Tangent vectors y € S satisfy g’ (x, y)yay? = 1.
@ Construct orthonormal observer frames:
= Complete y = fy to a frame f; with g£, (x, y)f2f> = —;.

Iy
o Let P be the space of all observer frames.

e Natural projection = : P — O discards spatial frame components.
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The observer frame bundle

@ Observer space of a Finsler spacetime:
o Consider all allowed observer tangent vectors:

o=J s

xeM

e Tangent vectors y € S satisfy gf, (x, y)yay? = 1.
@ Construct orthonormal observer frames:
= Complete y = f; to a frame f; with g, (x, y)f2f = —n;.

I
o Let P be the space of all observer frames.

e Natural projection = : P — O discards spatial frame components.
@ Group action on the frame bundle:

e SO(3) acts on spatial frame components by rotations.
@ Action is free and transitive on fibers of 7 : P — O.
= 7 : P — Ois principal K-bundle.
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e Observers
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Observers

Metric geometry

Timelike curve ~:

v~ R - M
T = (1)

Gar1™3” = 1
Orthonormal frame f:

Gabff ’;‘b = Nij
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Observers

Metric geometry Finsler geometry

Timelike curve : Timelike curve ~:
7o R o= vy : R - M
7=l T = (r)
Gab¥34P = —1 Y(r) € Sy C TM
Orthonormal frame f: Canonical lift T':
fa = 42 F(r) = (v(7), (7))

Nr)eOcC ™
GabPf = my .
i Orthonormal frame f:
f& =42
gg—bfialj'b = —Nj
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Observers

Metric geometry Finsler geometry Cartan geometry

Timelike curve ~:

v~ R - M
T = (1)

Gab¥?4° = —1
Orthonormal frame f:

Gabff ’;‘b = Nij

Manuel Hohmann (University of Tartu)

Timelike curve ~:

v : R - M
T = 7(7)

A(1) € S,Y(T) c ™
Canonical lift '

F(r) = (v(7),¥(7))
Nr)eOcC ™
Orthonormal frame f:
f& =42
ghp PP = —nj

Finsler and Cartan geometry

Observer curve I':

r - R - O
T = I(7)

Lift condition:
&' (r) = &
Orthonormal frame f:

fer Y (I(r)cP

4 June 2014 20/ 31



Inertial observers

Metric geometry

Minimize arc length integral:

b
| Vimtrneieiet
3
Geodesic equation:

7%+ Mpei?9° = 0
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Inertial observers

Metric geometry Finsler geometry

Minimize arc length integral: Minimize arc length integral:
) b .
| Vimtrneieiet R
1 1
Geodesic equation: Geodesic equation:
;_?a + rabc;)/b;yC — 0 ;)-/a + Nab,'yb — 0

Geodesic spray:
S = y?(0a — N°20p)
Integral curves:
[(7) = S(I(7))

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 4 June 2014 21/31



Inertial observers

Metric geometry Finsler geometry

Minimize arc length integral: Minimize arc length integral:
) b .
| Vimtrneieiet R
1 1
Geodesic equation: Geodesic equation:
;_?a + rabc;)/b;yC — 0 ;)-/a + Nab,'yb — 0

Cartan geometry Geodesic spray:

Geodesic condition:
- . S = y%(0a— Nbagb)
ber(r)=0
Integral curves:
Integral curves:

[(7) = &(r(7))
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Observers on metric spacetimes

@ Observer trajectories:

o Observer trajectory v in M.
o < must be timelike and future-directed.
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Observers on metric spacetimes

@ Observer trajectories:

o Observer trajectory v in M.
o < must be timelike and future-directed.

@ Inertial observers:
e Minimize arc-length functional:

/ * g (O (0t

= Geodesic equation:

7%+ Mbe°3° = 0.
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Observers on Finsler spacetimes

@ Observer trajectories and canonical lifts:
o Observer trajectory v in M.
o Liftytoacurvel = (v,%)in TM.
e Curves I'in TM are canonical lifts if and only if

axar = y2.

e Tangent vector 4(7) € S,(; I'is curve in O C TM.
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Observers on Finsler spacetimes

@ Observer trajectories and canonical lifts:
o Observer trajectory v in M.
o Liftytoacurvel = (v,%)in TM.
e Curves I'in TM are canonical lifts if and only if

axar = y2.

e Tangent vector 4(7) € S,(; I'is curve in O C TM.
@ Inertial observers:
e Minimize arc length functional:

b

F(y(1),3(t))at.

t

= Geodesic equation:
524+ NP = 0.

= [ is integral curve of geodesic spray:
.r == S == ya5a .
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Observers on Cartan observer space

@ Observer curves:
e Consider curve I in O.
= Tangent vector splits into translation and boost:

M= (e’f) e+ (bo‘f> b, .
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Observers on Cartan observer space

@ Observer curves:
e Consider curve I in O.
= Tangent vector splits into translation and boost:

M= (e’f) e+ (bo‘f> b, .

@ Translational component of the tangent vector:
e Split into time and space components:

(e"l") e = (e"l") &+ (e“'r) e,.

o Components are relative to observer’s frame.
= Physical observer: translation corresponds to time direction:

EMr=1reT=0c¢€l=0).
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Observers on Cartan observer space

@ Observer curves:
e Consider curve I in O.
= Tangent vector splits into translation and boost:

M= (e’f) e+ (bo‘f> b, .

@ Translational component of the tangent vector:
e Split into time and space components:

(e"l") e = (e"l") &+ (e“'r) e,.

o Components are relative to observer’s frame.
= Physical observer: translation corresponds to time direction:

EMr=1reT=0c¢€l=0).

@ Boost component of the tangent vector:
e Measures acceleration in observer’s frame.
o Inertial observers are non-accelerating: b*T = 0. _
= Inertial observers follow integral curves of time translation: I' = g,.
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e Gravity
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Gravity

Einstein-Hilbert action: Se = 21_5/ d*xy—gR
M
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Gravity

Einstein-Hilbert action: SEH=21/ d*xy=g R
Kk Jm

Finsler geometry
Using non-linear connection:

’
Sn = / Volz R4y ”
K Jx

Using linear connection:

S [ Vola " A% ucs
kJx
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Metric geometry

Einstein-Hilbert action: SEH=21/ d*xy=g R
Kk Jm

Finsler geometry Cartan geometry

Using non-linear connection: Using horizontal vector fields:
_ l/zvmé R%y" Su = / b ([2,,. &]) Volo
Using linear connection: Using Cartan curvature:
S = l/szlégFabRCacb Sc = /O,z.;b(ﬁh A Fy) A Vols
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Metric geometry

Einstein-Hilbert action: SEH=21/ d*xy=g R
Kk Jm

Finsler geometry Cartan geometry

Using non-linear connection: Using horizontal vector fields:

1 Fem
SN = / Volz R4y ” < SH :/ b*([&,, &]) Volpo
K Jy o
Using linear connection: Using Cartan curvature:

SL—l/VolégFabRCacb < sC:/ wy(Fy A Fy) A Vol
pu o
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Gravity from Cartan to Finsler

@ MacDowell-Mansouri gravity on observer space: [s. cieien, 0. wise "12]

sG:/eomtr,,(/r,,A*Fh)AbaAb@Ab7
(0]

e Hodge operator x on b.
e Non-degenerate H-invariant inner product tr, on b.
e Boost part b € Q¢(P, ) of the Cartan connection.
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Gravity from Cartan to Finsler

@ MacDowell-Mansouri gravity on observer space: [s. cieien, 0. wise "12]

sG:/eomtr,,(/r,,A*Fh)AbaAb@Ab7
(0]

e Hodge operator x on b.
e Non-degenerate H-invariant inner product tr, on b.
e Boost part b € Q¢(P, ) of the Cartan connection.

@ Translate terms into Finsler language (with R = dw + %[w,w]):
e Curvature scalar:

[e,e] AxR ~~ gF#®RC,pdV .
e Cosmological constant:
[e, e] A x[e, e] ~ dV.
o Gauss-Bonnet term:
R A %R ~» 90N R ot Regn dV .
= Gravity theory on Finsler spacetime.
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Gravity from Finsler to Cartan

@ Finsler gravity action: (c. peiter, M. wohitarth '11]
Sg = / d*x d®y \/ —GRZyP .
@)

e Sasaki metric G on O.
o Non-linear curvature R?,,.
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Gravity from Finsler to Cartan

@ Finsler gravity action: (c. peiter, M. wohitarth '11]
Sg = / d*x d®y \/ —GRZyP .
@)

e Sasaki metric G on O.
o Non-linear curvature R?,,.

@ Translate terms into Cartan language:

d*xd®y \/ G = cjigcap, € NE NEKNE N A ADY,
R2aby° = b*[A(Za), A(20)] -

= Gravity theory on observer space.
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Outline

e Conclusion
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@ Finsler spacetimes

Generalization of metric spacetimes.

Geometry defined by function L on TM.
Lengths measured by Finsler function F = |L|7.
Metric generalized by Finsler metric g/,
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@ Finsler spacetimes
o Generalization of metric spacetimes.
Geometry defined by function L on TM.
e Lengths measured by Finsler function F = |L|n.
e Metric generalized by Finsler metric gf,.

@ Cartan geometry on observer space

Can be obtained from Finsler spacetimes.

Geometry on principal SO(3)-bundle = : P — O.
Space O of physical observer four-velocities.

Space P of physical observer frames.

Geometry defined by Cartan connection A € Q'(P, g).
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@ Finsler spacetimes
o Generalization of metric spacetimes.
Geometry defined by function L on TM.
e Lengths measured by Finsler function F = |L|n.
e Metric generalized by Finsler metric gf,.

@ Cartan geometry on observer space

e Can be obtained from Finsler spacetimes.

e Geometry on principal SO(3)-bundle = : P — O.

e Space O of physical observer four-velocities.

Space P of physical observer frames.

Geometry defined by Cartan connection A € Q'(P, g).
@ Different geometries provide compatible definitions of:
Causality

Observers

Observables

Gravity
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Open questions

@ Experimental effects of non-tensorial structures?
@ Properties of matter (gauge) theories on these backgrounds?
@ Quantization of these structures?
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Open questions

@ Experimental effects of non-tensorial structures?
@ Properties of matter (gauge) theories on these backgrounds?
@ Quantization of these structures?

MH, “Observer dependent geometries”,
in: “Mathematical Structures of the Universe”,
Copernicus Center Press, Krakow, 2014
arXiv:1403.4005 [math-ph]
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