Fluid dynamics on Finsler spacetimes

Manuel Hohmann

DPG-Tagung Berlin – Session GR 15 19. März 2015

Manuel Hohmann (University of Tartu)

Motivation

• Fluids are everywhere:

- Perfect fluid (radiation, dust, dark matter...) cosmology.
- Maxwell-Boltzmann gas atmospheres.
- Plasma stellar dynamics, primordial plasma.

Motivation

• Fluids are everywhere:

- Perfect fluid (radiation, dust, dark matter...) cosmology.
- Maxwell-Boltzmann gas atmospheres.
- Plasma stellar dynamics, primordial plasma.
- Lift fluid dynamics to observer space:
 - All measurements are performed by observers.
 - Measurements depend on observer's frame (velocity).
 - Quantum gravity: possible non-tensorial velocity dependence.
 - Observer space: space of all physical velocities.
 - Fluids naturally modeled as densities on observer space.

Motivation

- Fluids are everywhere:
 - Perfect fluid (radiation, dust, dark matter...) cosmology.
 - Maxwell-Boltzmann gas atmospheres.
 - Plasma stellar dynamics, primordial plasma.
- Lift fluid dynamics to observer space:
 - All measurements are performed by observers.
 - Measurements depend on observer's frame (velocity).
 - Quantum gravity: possible non-tensorial velocity dependence.
 - Observer space: space of all physical velocities.
 - Fluids naturally modeled as densities on observer space.
- Finsler spacetimes as observer space geometry:
 - Finsler geometry of space widely used in physics.
 - Finsler geometry generalizes Riemannian geometry.
 - Finsler spacetimes are suitable backgrounds for physics.
 - Possible explanations of yet unexplained phenomena.

$$\tau = \int_{t_1}^{t_2} \sqrt{|g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)|} dt \rightsquigarrow \int_{t_1}^{t_2} F(x(t),\dot{x}(t)) dt.$$

$$\tau = \int_{t_1}^{t_2} \sqrt{|g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)|} dt \rightsquigarrow \int_{t_1}^{t_2} F(x(t),\dot{x}(t)) dt.$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$

$$\tau = \int_{t_1}^{t_2} \sqrt{|g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)|} dt \rightsquigarrow \int_{t_1}^{t_2} F(x(t),\dot{x}(t)) dt.$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$

- Finsler spacetime [C. Pfeifer, M. Wohlfarth '11]:
 - Length measure for tangent vectors.
 - Notion of timelike, lightlike, spacelike tangent vectors.
 - "Future unit timelike" vectors: physically allowed velocities.

$$\tau = \int_{t_1}^{t_2} \sqrt{|g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)|} dt \rightsquigarrow \int_{t_1}^{t_2} F(x(t),\dot{x}(t)) dt.$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$

- Finsler spacetime [C. Pfeifer, M. Wohlfarth '11]:
 - Length measure for tangent vectors.
 - Notion of timelike, lightlike, spacelike tangent vectors.
 - "Future unit timelike" vectors: physically allowed velocities.
- \Rightarrow Observer space $O \subset TM$ of allowed velocities.

Point mass dynamics on observer space

- Point mass follows curve $\gamma : \mathbb{R} \to M$ on spacetime M.
- γ is extremal curve of Finsler length measure:

$$\delta\int {m F}(\gamma(t),\dot{\gamma}(t)) dt = 0$$
 .

Point mass dynamics on observer space

- Point mass follows curve γ : ℝ → M on spacetime M.
- γ is extremal curve of Finsler length measure:

$$\delta\int F(\gamma(t),\dot{\gamma}(t))dt=$$
0.

• Canonical lift Γ of curve to tangent bundle *TM*:

$$\Gamma = (\gamma, \dot{\gamma}).$$

• Lift of geodesic equation to *TM* is first order differential equation:

$$\dot{\Gamma}(t) = \mathbf{S}(\Gamma(t)).$$

 \Rightarrow Solutions are integral curves of vector field **S** on *TM*.

Point mass dynamics on observer space

- Point mass follows curve $\gamma : \mathbb{R} \to M$ on spacetime M.
- γ is extremal curve of Finsler length measure:

$$\delta\int F(\gamma(t),\dot{\gamma}(t))dt=$$
0.

• Canonical lift Γ of curve to tangent bundle *TM*:

$$\Gamma = (\gamma, \dot{\gamma}).$$

• Lift of geodesic equation to *TM* is first order differential equation:

$$\dot{\Gamma}(t) = \mathbf{S}(\Gamma(t)).$$

- \Rightarrow Solutions are integral curves of vector field **S** on *TM*.
 - Physically allowed velocities: $\Gamma(t) \in O$.
 - Restriction $\mathbf{r} = \mathbf{S}|_{O}$: Reeb vector field.
- \Rightarrow Physical geodesics are integral curves of **r** on *O*.

From particles to fluids

- Model fluid by classical, relativistic particles:
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.

From particles to fluids

- Model fluid by classical, relativistic particles:
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.
- Particle measure: $\omega \in \Omega^6(\mathcal{O})$ unique 6-form such that:
 - ω non-degenerate on every hypersurface not tangent to **r**.
 - $d\omega = 0.$

From particles to fluids

- Model fluid by classical, relativistic particles:
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.
- Particle measure: $\omega \in \Omega^6(\mathcal{O})$ unique 6-form such that:
 - ω non-degenerate on every hypersurface not tangent to **r**.

• $d\omega = 0$.

• Define one-particle distribution function $\phi : O \to \mathbb{R}^+$ such that:

For every hypersurface $\sigma \subset O$,

$$\boldsymbol{\mathsf{N}}[\sigma] = \int_{\sigma} \boldsymbol{\phi} \boldsymbol{\omega}$$

of particle trajectories through σ .

• Counting of particle trajectories respects hypersurface orientation.

Collisions & the Liouville equation

• Collision in spacetime ++++ interruption in observer space.

Collisions & the Liouville equation

• Collision in spacetime ++++ interruption in observer space.

• For any open set
$$V \in O$$
,

$$\int_{\partial V} \phi \omega = \int_{V} d(\phi \omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

of outbound trajectories - # of inbound trajectories. \Rightarrow Collision density measured by $\mathcal{L}_{\mathbf{r}}\phi$.

Collisions & the Liouville equation

• Collision in spacetime +++ interruption in observer space.

• For any open set $V \in O$,

$$\int_{\partial V} \phi \omega = \int_{V} d(\phi \omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

of outbound trajectories - # of inbound trajectories.

- \Rightarrow Collision density measured by $\mathcal{L}_{\mathbf{r}}\phi$.
 - Collisionless fluid: trajectories have no endpoints, $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
- \Rightarrow Simple, first order equation of motion for collisionless fluid.
- $\Rightarrow \phi$ is constant along integral curves of **r**.

Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.

Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.

"Jenkka"

Manuel Hohmann (University of Tartu)

Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.

Collisionless fluid: $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.

Manuel Hohmann (University of Tartu)

[&]quot;Jenkka"

Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.

Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.

Collisionless fluid: $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.

Interacting fluid: $\mathcal{L}_{\mathbf{r}}\phi \neq \mathbf{0}$.

Manuel Hohmann (University of Tartu)

[&]quot;Jenkka"

Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.

Collisionless fluid: $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.

Interacting fluid: $\mathcal{L}_{\mathbf{r}}\phi \neq \mathbf{0}$.

"Jenkka"

"Polkka"

Example: dust fluid in Finsler geometry

- Classical dust with density $\rho(x)$ and velocity $u^a(x)$.
- One-partical distribution function on O:

$$\phi(\hat{x},\theta) = \frac{1}{m}\rho(\hat{x})\frac{\delta(\theta - v(\hat{x}))}{\sqrt{\det h^{F}(\hat{x},\theta)}}\,.$$

Example: dust fluid in Finsler geometry

- Classical dust with density $\rho(x)$ and velocity $u^a(x)$.
- One-partical distribution function on O:

$$\phi(\hat{x},\theta) = \frac{1}{m}\rho(\hat{x})\frac{\delta(\theta - v(\hat{x}))}{\sqrt{\det h^{F}(\hat{x},\theta)}}\,.$$

- No collisions \Rightarrow Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
- \Rightarrow Equations of motion for ρ and u^a :

$$\nabla u^a = 0$$
 and $\nabla_{\delta_a}(\rho u^a) = 0$.

- Dynamical covariant derivative ∇ .
- Horizontal part of Cartan linear connection ∇_{δ_a} .

Example: dust fluid in Finsler geometry

- Classical dust with density $\rho(x)$ and velocity $u^a(x)$.
- One-partical distribution function on O:

$$\phi(\hat{x},\theta) = \frac{1}{m}\rho(\hat{x})\frac{\delta(\theta - v(\hat{x}))}{\sqrt{\det h^{F}(\hat{x},\theta)}}\,.$$

• No collisions \Rightarrow Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.

 \Rightarrow Equations of motion for ρ and u^a :

$$\nabla u^a = 0$$
 and $\nabla_{\delta_a}(\rho u^a) = 0$.

- Dynamical covariant derivative ∇ .
- Horizontal part of Cartan linear connection ∇_{δ_a} .
- Metric background geometry $F(x, y) = \sqrt{|g_{ab}(x)y^a y^b|}$:

$$u^b \nabla_b u^a = 0$$
 and $\nabla_a (\rho u^a) = 0$.

\Rightarrow Well-known Euler equations of fluid dynamics.

- Most general cosmological Finsler function $F(\hat{t}, \hat{y}, \hat{w})$.
 - Cosmological time *t*.
 - Velocity component \hat{y} in \hat{t} -direction.
 - Velocity component \hat{w} perpendicular to \hat{t} -direction.

- Most general cosmological Finsler function $F(\hat{t}, \hat{y}, \hat{w})$.
 - Cosmological time t.
 - Velocity component \hat{y} in \hat{t} -direction.
 - Velocity component \hat{w} perpendicular to \hat{t} -direction.
- Homogeneity: F determined by \tilde{F} as

$$F(\hat{t},\hat{y},\hat{w})=\hat{y}\tilde{F}(\hat{t},\hat{w}/\hat{y})$$
.

• Observer space *O* with $\hat{y}\tilde{F}(\hat{t},\hat{w}/\hat{y}) = 1$.

- Most general cosmological Finsler function $F(\hat{t}, \hat{y}, \hat{w})$.
 - Cosmological time t.
 - Velocity component \hat{y} in \hat{t} -direction.
 - Velocity component \hat{w} perpendicular to \hat{t} -direction.
- Homogeneity: F determined by \tilde{F} as

$$F(\hat{t},\hat{y},\hat{w})=\hat{y}\tilde{F}(\hat{t},\hat{w}/\hat{y}).$$

- Observer space O with $\hat{y}\tilde{F}(\hat{t},\hat{w}/\hat{y}) = 1$.
- Most general fluid $\phi(\hat{t}, \hat{w}/\hat{y})$ with cosmological symmetry.

• Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$:

$$\tilde{F}_{ww}\phi_t=\tilde{F}_{tw}\phi_w\,.$$

- Most general cosmological Finsler function $F(\hat{t}, \hat{y}, \hat{w})$.
 - Cosmological time *t*.
 - Velocity component \hat{y} in \hat{t} -direction.
 - Velocity component \hat{w} perpendicular to \hat{t} -direction.
- Homogeneity: F determined by \tilde{F} as

$$F(\hat{t},\hat{y},\hat{w})=\hat{y}\tilde{F}(\hat{t},\hat{w}/\hat{y}).$$

- Observer space *O* with $\hat{y}\tilde{F}(\hat{t},\hat{w}/\hat{y}) = 1$.
- Most general fluid $\phi(\hat{t}, \hat{w}/\hat{y})$ with cosmological symmetry.
- Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$:

$$\tilde{F}_{ww}\phi_t = \tilde{F}_{tw}\phi_w$$
.

• Robertson-Walker metric: $\tilde{F} = \sqrt{1 - a^2(\hat{t})\hat{w}^2/\hat{y}^2}$:

$$\phi_t = -\frac{\hat{w}}{\hat{y}} \left(\frac{\hat{w}^2}{\hat{y}^2}a^2 - 2\right) \frac{\dot{a}}{a} \phi_w \,. \label{eq:phi_time_eq}$$

Conclusion

- Basic idea:
 - Model fluids by particle trajectories.
 - Lift trajectories from spacetime to observer space.
 - Describe geometry of observer space using Finsler geometry.
 - Measure particle density by distribution function.
 - Derive fluid dynamics from geodesic motion.

Conclusion

- Basic idea:
 - Model fluids by particle trajectories.
 - Lift trajectories from spacetime to observer space.
 - Describe geometry of observer space using Finsler geometry.
 - Measure particle density by distribution function.
 - Derive fluid dynamics from geodesic motion.
- Presented examples:
 - Classical dust fluid on Finsler spacetime.
 - Most general cosmological fluid on Finsler spacetime.

Conclusion

- Basic idea:
 - Model fluids by particle trajectories.
 - Lift trajectories from spacetime to observer space.
 - Describe geometry of observer space using Finsler geometry.
 - Measure particle density by distribution function.
 - Derive fluid dynamics from geodesic motion.
- Presented examples:
 - Classical dust fluid on Finsler spacetime.
 - Most general cosmological fluid on Finsler spacetime.
- Future research goals:
 - Coupling of fluids to non-metric gravity theories.
 - Cosmological solutions of gravity with non-metric geometry.
 - Extension of parameterized post-Newtonian formalism.

- Kinetic theory on the tangent bundle:
 - J. Ehlers, in: "General Relativity and Cosmology", pp 1–70, Academic Press, New York / London, 1971.
 - O. Sarbach and T. Zannias, AIP Conf. Proc. 1548 (2013) 134 [arXiv:1303.2899 [gr-qc]].
 - O. Sarbach and T. Zannias, Class. Quant. Grav. 31 (2014) 085013 [arXiv:1309.2036 [gr-qc]].
- Finsler spacetimes:
 - C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 84 (2011) 044039 [arXiv:1104.1079 [gr-qc]].
 - C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 85 (2012) 064009 [arXiv:1112.5641 [gr-qc]].
 - MH, in: "Mathematical structures of the Universe", pp 13–55, Copernicus Center Press, Krakow, 2014.