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@ So far unexplained cosmological observations:

o Accelerating expansion of the universe
e Homogeneity of cosmic microwave background
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@ So far unexplained cosmological observations:
o Accelerating expansion of the universe
e Homogeneity of cosmic microwave background
@ Models for explaining these observations:
o ACDM model / dark energy
o Inflation
@ Physical mechanisms are not understood:

Unknown type of matter?

Modification of the laws of gravity?

Scalar field in addition to metric mediating gravity?
Quantum gravity effects?
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@ So far unexplained cosmological observations:
o Accelerating expansion of the universe
e Homogeneity of cosmic microwave background
@ Models for explaining these observations:
o ACDM model / dark energy
o Inflation
@ Physical mechanisms are not understood:

Unknown type of matter?

Modification of the laws of gravity?

Scalar field in addition to metric mediating gravity?
Quantum gravity effects?

@ Idea here: modification of the geometrical structure of spacetime!

o Replace metric spacetime geometry by Finsler geometry.
e Similarly: replacing flat spacetime by curved spacetime led to GR.
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Finsler spacetimes

@ Finsler geometry of space widely used in physics:
e Approaches to quantum gravity
e Electrodynamics in anisotropic media
e Modeling of astronomical data
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Finsler spacetimes

@ Finsler geometry of space widely used in physics:
e Approaches to quantum gravity
e Electrodynamics in anisotropic media
e Modeling of astronomical data
@ Finsler geometry generalizes Riemannian geometry:
o Geometry described by Finsler function on the tangent bundle.
e Finsler function measures length of tangent vectors.
o Well-defined notions of connections, curvature, parallel transport. ..
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Finsler spacetimes

@ Finsler geometry of space widely used in physics:
e Approaches to quantum gravity
e Electrodynamics in anisotropic media
e Modeling of astronomical data
@ Finsler geometry generalizes Riemannian geometry:
o Geometry described by Finsler function on the tangent bundle.
e Finsler function measures length of tangent vectors.
o Well-defined notions of connections, curvature, parallel transport. ..
@ Finsler spacetimes are suitable backgrounds for:
o Gravity
o Electrodynamics
o Other matter field theories
@ Possible explanations of yet unexplained phenomena:
Fly-by anomaly
o Galaxy rotation curves
o Accelerating expansion of the universe
o Inflation
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The clock postulate

@ Proper time along a curve in Lorentzian spacetime:

b
r= [ gt
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The clock postulate

@ Proper time along a curve in Lorentzian spacetime:

b
r= [ gt

@ Finsler geometry: use a more general length functional:
b
T = F(x(t), x(t))dt.
]
@ Finsler function F: TM — R*.
@ Parametrization invariance requires homogeneity:

F(x,\y) =AF(x,y) YA>0.
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Finsler spacetimes

@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
= Finsler metric with Lorentz signature:

10 0

F L =

= Notion of timelike, lightlike, spacelike tangent vectors.

Manuel Hohmann (University of Tartu) Finsler cosmology 283. June 2015 5/15



Finsler spacetimes

@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
= Finsler metric with Lorentz signature:

10 0
F L =

= Notion of timelike, lightlike, spacelike tangent vectors.
@ Unit vectors y € TxM defined by

F2(x,y) = gby(x,¥)y2y? =1.

= Set Qy C TyM of unit timelike vectors at x € M.
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Finsler spacetimes

@ Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
= Finsler metric with Lorentz signature:

10 0
F L =

= Notion of timelike, lightlike, spacelike tangent vectors.
@ Unit vectors y € TxM defined by

F2(x,y) = ghp(x,¥)y2y? =1.

= Set Q, C TyM of unit timelike vectors at x € M.
@ Q, contains a closed connected component Sy C Q.
~ Causality: Sy corresponds to physical observers.
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Gravitational dynamics

@ Gravitational action:

Sg = 1 / Vol 5 R?4py" .
K Jx
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Gravitational dynamics

@ Gravitational action:
1
Sg = / Vol 5 R?4py" .
K Js

@ Gravitational field equations:

_ R2 b
9" #9a0p(R°cay?) — 6 :-gy

+ ngab (VaSb + SaSb + ga(ycéch - NchC)) :|

= HT|Z
N
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Gravitational dynamics

@ Gravitational action:
1
Sg=— / Vol 5 R?4py" .
K Jx
@ Gravitational field equations:

Raabyb
F2

+ ZgFab (Vasb + S2Sp + Da(y°6cSp — NCbSc)) ]

9" #020p(RCcqy®) — 6

= HT|Z
pu

@ Geometry side obtained by variation of S with respect to F.
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Gravitational dynamics

@ Gravitational action:
1
Sg = / Vol 5 R?4py" .
K Js

@ Gravitational field equations:

_ R2 b
97 %°020p(R°cay?) — 6 :-gy

+ ngab (VaSb + SaSb + ga(ycéch - NchC)) :|

=krT|x
¥

@ Geometry side obtained by variation of Sg with respect to F.
@ Variation of matter action yields energy-momentum scalar 7.
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Point masses on Finsler spacetimes

@ Point masses follow Finsler geodesics.
@ Geodesic equation for curve x(7) on spacetime M:

X2+ Ny (x, x)x? = 0.
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Point masses on Finsler spacetimes

@ Point masses follow Finsler geodesics.
@ Geodesic equation for curve x(7) on spacetime M:

X2+ Ny (x, x)x? = 0.
@ Canonical lift of curve to tangent bundle TM:

X, y=xe€0= USXCTM.
xXeM

@ Lift of geodesic equation:

).(a:yaa ya:_Nab(Xay)yb'
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Point masses on Finsler spacetimes

@ Point masses follow Finsler geodesics.
@ Geodesic equation for curve x(7) on spacetime M:

X7 + N3y(x, x)x° = 0.
@ Canonical lift of curve to tangent bundle TM:

X, y=xe€0= USXCTM.
xXeM

@ Lift of geodesic equation:
XE=y%, g =—N(x,y)y".
= Solutions are integral curves of vector field on O:
Y202 — yPNZpdp =r.

= Point mass trajectories modeled by integral curves of r on O.
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Fluids on Finsler spacetimes

@ Single-component fluid:

o Constituted by classical, relativistic particles.

o Particles have equal properties (mass, charge, ...).

o Particles follow piecewise geodesic curves.

e Endpoints of geodesics are interactions with other particles.
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Fluids on Finsler spacetimes

@ Single-component fluid:

o Constituted by classical, relativistic particles.

o Particles have equal properties (mass, charge, ...).

o Particles follow piecewise geodesic curves.

e Endpoints of geodesics are interactions with other particles.
@ Continuum limit:

o Phase space O is filled with particles.
o Particle density function ¢ : O — R*.
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Fluids on Finsler spacetimes

@ Single-component fluid:
o Constituted by classical, relativistic particles.
o Particles have equal properties (mass, charge, ...).
o Particles follow piecewise geodesic curves.
e Endpoints of geodesics are interactions with other particles.
@ Continuum limit:
o Phase space O is filled with particles.
o Particle density function ¢ : O — R*.
@ Collisionless fluid:
o Particles do not interact with other particles.
= Particles follow geodesics.
= Continuum dynamics given by Liouville equation:

[:r(b:O

Manuel Hohmann (University of Tartu) Finsler cosmology 283. June 2015



Example: collisionless dust fluid

@ Variables describing a classical dust fluid:
o Mass density p: M — RT.
e Velocity u: M — O.
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Example: collisionless dust fluid

@ Variables describing a classical dust fluid:
o Mass density p: M — RT.
e Velocity u: M — O.

@ Particle density function:

¢(X, ¥) ~ p(x)ds, (¥, u(x)).
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Example: collisionless dust fluid

@ Variables describing a classical dust fluid:
o Mass density p: M — RT.
e Velocity u: M — O.

@ Particle density function:
o(x, ) ~ p(x)ds (¥, u(x)).
@ Apply Liouville equation:

0 = Vu? = uPo,u? + uPN3,

1 -
0 = Vi, (p) = Dalpu?) + 5pug"  (9aghy — Nadughe ) -
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Example: collisionless dust fluid

@ Variables describing a classical dust fluid:
o Mass density p: M — RT.
e Velocity u: M — O.

@ Particle density function:
o(x, ) ~ p(x)ds (¥, u(x)).
@ Apply Liouville equation:

0 = Vu? = uPo,u? + uPN3,

1 _
0 = Vi, (%) = 0alpu®) + 5pu"g™ > (Daghy, — Nadagh) -

@ Metric limit F2(x, y) = |gan(X)y2y?| yields Euler equations:

UPVou? =0, Va(pu?)=0.
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Fluid energy-momentum

@ Energy-momentum functional T[¢]?
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Fluid energy-momentum

@ Energy-momentum functional T[¢]?
@ Known result for metric perfect fluid:

o Density p.
e Pressure p.
e Velocity u?.

Topu(X, ) = (1-6(gap(x)u?(x)y®)?) p(x)+3(1-2(gap(X)u?(x)y*)?)P(x).
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Fluid energy-momentum

@ Energy-momentum functional T[¢]?
@ Known result for metric perfect fluid:

o Density p.
e Pressure p.
e Velocity u?.

Typ.u(X, ) = (1-6(gap(X)u?(x)y?)?)p(x)+3(1-2(gap(x)u?(x)y°)?)p(x) .
@ Generalize to Finsler fluid:

Consider dust: p = 0.

Consider superposition of dust with different velocities.
Integrate over contributions from each velocity.
Generalize g.»u?v? to Finsler angle.

Ts(x,v) = m/s d®v'/det h(x, v')é(x, v')(1 — 6cos?® <(v, V)).
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Cosmological symmetry

@ Introduce suitable coordinates on TM:

tr0,0,yy" ¥l y?.
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Cosmological symmetry

@ Introduce suitable coordinates on TM:

tr0,0,yy" ¥l y?.

@ Most general Finsler function obeying cosmological symmetry:

F=F(ty,w), w?= i +r? <(y9)2 + sin? H(yW)z) :
W) 1— kr?

@ Homogeneity of Finsler function F(t, y!, w) = y'F(t, w/y").
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Cosmological symmetry

@ Introduce suitable coordinates on TM:

tr0,0,yy" ¥l y?.

@ Most general Finsler function obeying cosmological symmetry:

_ t 2 _ (y)? 2 02 © 2 0 0)2
F—F(Ly,W), W—1_kr2+r <(y)+5|n H(y))

@ Homogeneity of Finsler function F(t, y!, w) = y'F(t, w/y").

@ Introduce new coordinates: y = y!F(t,w/y!), w = w/y".

= Coordinates on observer space O with y = 1.

— Geometry function F(t, W) on O.
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Cosmological fluid dynamics

@ Most general fluid obeying cosmological symmetry:

¢ = ot W).
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Cosmological fluid dynamics

@ Most general fluid obeying cosmological symmetry:

¢ = ot W).

@ Collisionless fluid satisfies Liouville equation:

1 00 F
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Cosmological fluid dynamics

@ Most general fluid obeying cosmological symmetry:

¢ =o(t,W).
@ Collisionless fluid satisfies Liouville equation:
1 00 F
@ Example: collisionless dust fluid ¢(x, y) ~ p(x)ds, (¥, u(x)):

1
)= gt <p<t) gF(t,O))zo.
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Cosmological gravitational dynamics

@ Start from gravitational field equations:

Raabyb
F2

[QF abéaéb(RCcdyd) -6

= HT|Z

+ ngab (VaSb + SaSb + 53(_}/0608[) - NCbSC)) :|
p
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Cosmological gravitational dynamics

@ Start from gravitational field equations:

Raabyb
F2

[gFabéagb(Rccdyd) -6

= HT|Z

+ ngab (VaSb + SaSb + 53(_}/0608[) — NCbSC)) :|
p

@ Some terms simplify for cosmological symmetry: R, °.
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Cosmological gravitational dynamics

@ Start from gravitational field equations:

Raabyb
F2

[QF abéaéb(RCcdyd) -6

= HT|:

+ ngab (VaSb + SaSb + 53(_}/0608[) - Nchc)) :|
p

@ Some terms simplify for cosmological symmetry: R2,y?.
@ Some terms don’t simplify at all: N9y, V35,

Manuel Hohmann (University of Tartu) Finsler cosmology 28. June 2015 13/15



Cosmological gravitational dynamics

@ Start from gravitational field equations:

Raabyb
F2

[QF abéaéb(RCcdyd) -6

= HT|:

+ ZgFab (VaSb + SaSb + 53(_}/0608[) - NCbSC)) :|
p

@ Some terms simplify for cosmological symmetry: R2,y?.
@ Some terms don’t simplify at all: N3y, V3Sp.
@ Simplify the problem:

o Finsler perturbation of metric geometry.
e Finsler function using higher rank tensors: Ha,...g,y2 - - - y2.
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@ Finsler spacetimes:

Define geometry by length functional.

Observer space O of physical four-velocities.
Geodesics are integral curves of vector field on O.
Dynamics given by gravitational action.
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@ Finsler spacetimes:
o Define geometry by length functional.
e Observer space O of physical four-velocities.
o Geodesics are integral curves of vector field on O.
e Dynamics given by gravitational action.

@ Fluid dynamics:

o Model fluids by point mass trajectories.
o Define fluid density on observer space.
o Collisionless fluid satisfies Liouville equation.

Manuel Hohmann (University of Tartu) Finsler cosmology 28. June 2015



@ Finsler spacetimes:
o Define geometry by length functional.
e Observer space O of physical four-velocities.
o Geodesics are integral curves of vector field on O.
e Dynamics given by gravitational action.

@ Fluid dynamics:

o Model fluids by point mass trajectories.
o Define fluid density on observer space.
o Collisionless fluid satisfies Liouville equation.

@ Cosmology:

e All guantities depend on only two coordinates t, w.
o Simple equation of motion for cosmological fluid matter.
o Gravitational field equation becomes involved.
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@ Derivation of Finsler-Friedmann equations:
o Finsler perturbation of metric background.
e Simple model Finsler geometry from higher rank tensors.
o Fully general Finsler-Friedmann equations?
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@ Derivation of Finsler-Friedmann equations:
o Finsler perturbation of metric background.
e Simple model Finsler geometry from higher rank tensors.
o Fully general Finsler-Friedmann equations?

@ Solving for cosmological dynamics

o Dark energy?
o Inflation?
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