Symmetry and cosmology in Cartan language for geometric theories of gravity arXiv:1505.07809

Manuel Hohmann

Laboratory of Theoretical Physics Institute of Physics University of Tartu

30. June 2015

Motivation

- Spacetime symmetries important in physics / gravity:
 - Planar symmetry for gravitational waves.
 - Spherical symmetry for stellar objects.
 - Axial symmetry for rotating systems.
 - Homogeneous and isotropic cosmological symmetry.

Motivation

- Spacetime symmetries important in physics / gravity:
 - Planar symmetry for gravitational waves.
 - Spherical symmetry for stellar objects.
 - Axial symmetry for rotating systems.
 - Homogeneous and isotropic cosmological symmetry.
- Cartan geometry provides unified description of...
 - Affine geometry
 - Riemann-Cartan geometry
 - Riemannian geometry
 - Weizenböck geometry
 - ...

Motivation

- Spacetime symmetries important in physics / gravity:
 - Planar symmetry for gravitational waves.
 - Spherical symmetry for stellar objects.
 - Axial symmetry for rotating systems.
 - Homogeneous and isotropic cosmological symmetry.
- Cartan geometry provides unified description of...
 - Affine geometry
 - Riemann-Cartan geometry
 - Riemannian geometry
 - Weizenböck geometry
 - ...
- Framework can be generalized to observer space:
 - All measurements are performed by observers.
 - Measurements depend on observer's frame (velocity).
 - Quantum gravity: possible non-tensorial velocity dependence.
 - Observer space: space of all physical velocities.
 - Geometry of observer space naturally given by Cartan geometry.

Complete lifts of vector fields

- Tangent bundle lift:
 - Diffeomorphism group $\varphi : \mathbb{R} \times M \to M$ induces $\hat{\varphi} : \mathbb{R} \times TM \to TM$:

$$\hat{\varphi}_t = \varphi_{t*} .$$

- $\hat{\varphi}$ generated by vector field $\hat{\xi} \in \text{Vect}(TM)$.
- In coordinates (x^a, y^a) on TM:

$$\hat{\xi} = \xi^a \partial_a + y^b \partial_b \xi^a \bar{\partial}_a.$$

Complete lifts of vector fields

- Tangent bundle lift:
 - Diffeomorphism group $\varphi : \mathbb{R} \times M \to M$ induces $\hat{\varphi} : \mathbb{R} \times TM \to TM$:

$$\hat{\varphi}_t = \varphi_{t*} \,.$$

- $\hat{\varphi}$ generated by vector field $\hat{\xi} \in \text{Vect}(TM)$.
- In coordinates (x^a, y^a) on TM:

$$\hat{\xi} = \xi^a \partial_a + y^b \partial_b \xi^a \bar{\partial}_a.$$

- Frame bundle lift:
 - Frame bundle FM = GL(M): linear maps $f \to T_x M, x \in M$.
 - Diffeomorphism group $\varphi : \mathbb{R} \times M \to M$ induces $\bar{\varphi} : \mathbb{R} \times FM \to FM$:

$$\bar{\varphi}_t(f) = \varphi_{t*} \circ f$$
.

- $\bar{\varphi}$ generated by vector field $\bar{\xi} \in \text{Vect}(FM)$.
- In coordinates (x^a, f_i^a) on TM:

$$\bar{\xi} = \xi^a \partial_a + f_i^b \partial_b \xi^a \bar{\partial}_a^i$$
.

Cartan geometry

- Klein geometry: Lie group G with closed subgroup $H \subset G$.
- Cartan geometry $(\pi : \mathcal{P} \to M, A)$ modeled on G/H:
 - Principal *H*-bundle $\pi: \mathcal{P} \to M$
 - 1-form $A \in \Omega^1(\mathcal{P}, \mathfrak{g})$

Cartan geometry

- Klein geometry: Lie group G with closed subgroup H ⊂ G.
- Cartan geometry $(\pi : \mathcal{P} \to M, A)$ modeled on G/H:
 - Principal *H*-bundle $\pi: \mathcal{P} \to M$
 - 1-form $A \in \Omega^1(\mathcal{P}, \mathfrak{g})$
- Conditions on Cartan connection $A \in \Omega^1(\mathcal{P}, \mathfrak{g})$:
 - For each $p \in \mathcal{P}$, $A_p : T_p \mathcal{P} \to \mathfrak{g}$ is linear isomorphism.
 - Equivariance: $(R_h)^*A = Ad(h^{-1}) \circ A \quad \forall h \in H$.
 - A restricts to Maurer-Cartan form of H on ker π_* .

Cartan geometry

- Klein geometry: Lie group G with closed subgroup H ⊂ G.
- Cartan geometry $(\pi : \mathcal{P} \to M, A)$ modeled on G/H:
 - Principal *H*-bundle $\pi: \mathcal{P} \to M$
 - 1-form $A \in \Omega^1(\mathcal{P}, \mathfrak{g})$
- Conditions on Cartan connection $A \in \Omega^1(\mathcal{P}, \mathfrak{g})$:
 - For each $p \in \mathcal{P}$, $A_p : T_p \mathcal{P} \to \mathfrak{g}$ is linear isomorphism.
 - Equivariance: $(R_h)^*A = Ad(h^{-1}) \circ A \quad \forall h \in H$.
 - A restricts to Maurer-Cartan form of H on ker π_* .
- Equivalent: fundamental vector fields $\underline{A} : \mathfrak{g} \to \text{Vect}(\mathcal{P})$:
 - For each $p \in \mathcal{P}$, $\underline{A}_p : \mathfrak{g} \to T_p \mathcal{P}$ is linear isomorphism.
 - Equivariance: $R_{h*} \circ \underline{A} = \underline{A} \circ \operatorname{Ad}(h^{-1}) \quad \forall h \in H.$
 - <u>A</u> restricts to canonical vector fields on ħ.

First order reductive models

- First order Cartan geometry:
 - Adjoint representations of $H \subset G$ on \mathfrak{g} and \mathfrak{h} .
 - Quotient representation of H on $\mathfrak{g}/\mathfrak{h}$ is faithful.
- \Rightarrow "Fake tangent bundle" $\mathcal{T} = \mathcal{P} \times_H \mathfrak{g}/\mathfrak{h}$.
- $\Rightarrow \mathcal{P}$ is "fake frame bundle": "admissible" frames $\mathfrak{g}/\mathfrak{h} \to \mathcal{T}_X$ for $X \in M$.

First order reductive models

- First order Cartan geometry:
 - Adjoint representations of $H \subset G$ on \mathfrak{g} and \mathfrak{h} .
 - Quotient representation of H on $\mathfrak{g}/\mathfrak{h}$ is faithful.
- \Rightarrow "Fake tangent bundle" $\mathcal{T} = \mathcal{P} \times_H \mathfrak{g}/\mathfrak{h}$.
- $\Rightarrow \mathcal{P}$ is "fake frame bundle": "admissible" frames $\mathfrak{g}/\mathfrak{h} \to \mathcal{T}_X$ for $X \in M$.
 - Reductive Cartan geometry:
 - Direct sum $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{z}$ of vector spaces.
 - \mathfrak{h} and \mathfrak{z} are subrepresentations of Ad H on \mathfrak{g} .
- \Rightarrow Cartan connection $A = \omega + e$ splits: $\omega \in \Omega^1(\mathcal{P}, \mathfrak{h})$ and $e \in \Omega^1(\mathcal{P}, \mathfrak{z})$.
- \Rightarrow *e* induces isomorphism $\mathcal{T}\cong TM$.
- \Rightarrow *e* induces isomorphism $\mathcal{P} \cong P \subset FM$.

First order reductive models

- First order Cartan geometry:
 - Adjoint representations of $H \subset G$ on \mathfrak{g} and \mathfrak{h} .
 - Quotient representation of H on $\mathfrak{g}/\mathfrak{h}$ is faithful.
- \Rightarrow "Fake tangent bundle" $\mathcal{T} = \mathcal{P} \times_H \mathfrak{g}/\mathfrak{h}$.
- $\Rightarrow \mathcal{P}$ is "fake frame bundle": "admissible" frames $\mathfrak{g}/\mathfrak{h} \to \mathcal{T}_X$ for $X \in M$.
 - Reductive Cartan geometry:
 - Direct sum $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{z}$ of vector spaces.
 - \mathfrak{h} and \mathfrak{z} are subrepresentations of Ad H on \mathfrak{g} .
- \Rightarrow Cartan connection $A = \omega + e$ splits: $\omega \in \Omega^1(\mathcal{P}, \mathfrak{h})$ and $e \in \Omega^1(\mathcal{P}, \mathfrak{z})$.
- \Rightarrow *e* induces isomorphism $\mathcal{T}\cong TM$.
- \Rightarrow *e* induces isomorphism $\mathcal{P} \cong P \subset FM$.
- \Rightarrow Cartan geometry $(\tilde{\pi}: P \rightarrow M, \tilde{A})$ with $\tilde{A} = \tilde{\omega} + \tilde{e}$.
 - \tilde{e} : solder form on $P \subset FM$.
 - Drop tilde and consider Cartan geometries on $P \equiv P \subset FM$.

Symmetries in Cartan language

- Symmetry generated by vector field $\xi \in \text{Vect}(M)$.
- \Rightarrow Frame bundle lift $\bar{\xi} \in \text{Vect}(FM)$ of ξ .

Symmetries in Cartan language

- Symmetry generated by vector field $\xi \in \text{Vect}(M)$.
- \Rightarrow Frame bundle lift $\bar{\xi} \in \text{Vect}(FM)$ of ξ .
 - Cartan geometry $(\pi: P \to M, A)$ invariant under ξ :
 - $\bar{\xi}$ is tangent to $P \subset FM$.
 - A is invariant under $\bar{\xi}$, i.e., $\mathcal{L}_{\bar{\xi}}A = 0$.

Symmetries in Cartan language

- Symmetry generated by vector field $\xi \in \text{Vect}(M)$.
- \Rightarrow Frame bundle lift $\bar{\xi} \in \text{Vect}(FM)$ of ξ .
- Cartan geometry $(\pi : P \rightarrow M, A)$ invariant under ξ :
 - $\bar{\xi}$ is tangent to $P \subset FM$.
 - *A* is invariant under $\bar{\xi}$, i.e., $\mathcal{L}_{\bar{\xi}}A = 0$.
- Solder form $e \in \Omega^1(P, \mathfrak{z})$:
 - For $v \in T_p P$ defined by $e(v) = p^{-1}(\pi_*(v))$.
 - Satisfies $\bar{\varphi}^*e = e$ for any diffeomorphism $\varphi: M \to M$.
 - $\Rightarrow \mathcal{L}_{\bar{\xi}}e = 0 \text{ for any } \xi \in \text{Vect}(M).$
 - \Rightarrow Only need to check $\mathcal{L}_{\bar{\xi}}\omega=0$.

The orthogonal model geometry

Model geometry for 3 + 1-dimensional spacetime:

$$G = \begin{cases} SO_0(4,1) & \Lambda > 0 \\ ISO_0(3,1) & \Lambda = 0 \\ SO_0(3,2) & \Lambda < 0 \end{cases}, \quad H = SO_0(3,1).$$

 \Rightarrow Klein geometries G/H are maximally symmetric spacetimes.

The orthogonal model geometry

• Model geometry for 3 + 1-dimensional spacetime:

$$G = \begin{cases} SO_0(4,1) & \Lambda > 0 \\ ISO_0(3,1) & \Lambda = 0 \ , \quad H = SO_0(3,1) \, . \\ SO_0(3,2) & \Lambda < 0 \end{cases}$$

- \Rightarrow Klein geometries G/H are maximally symmetric spacetimes.
- \Rightarrow Cartan geometry $(\pi: P \rightarrow M, A) \leftrightsquigarrow$ metric spacetime:
 - Metric g derived from solder form e.
 - Metric-compatible connection Γ derived from ω .
 - $P \subset FM$ is orthonormal frame bundle of (M, g).

The orthogonal model geometry

Model geometry for 3 + 1-dimensional spacetime:

$$\label{eq:G} G = \begin{cases} SO_0(4,1) & \Lambda > 0 \\ ISO_0(3,1) & \Lambda = 0 \ , \quad H = SO_0(3,1) \, . \\ SO_0(3,2) & \Lambda < 0 \end{cases}$$

- \Rightarrow Klein geometries G/H are maximally symmetric spacetimes.
- \Rightarrow Cartan geometry $(\pi: P \rightarrow M, A) \leftrightsquigarrow$ metric spacetime:
 - Metric g derived from solder form e.
 - Metric-compatible connection Γ derived from ω .
 - $P \subset FM$ is orthonormal frame bundle of (M, g).
 - Symmetry of Cartan connection under vector field $\xi \in \text{Vect}(M)$:
 - $\bar{\xi}$ is tangent to $P \Leftrightarrow \mathcal{L}_{\xi}g = 0$.
 - $\bullet \ \mathcal{L}_{\bar{\xi}}\omega=0 \Leftrightarrow \mathcal{L}_{\xi}\Gamma=0.$

Riemann-Cartan, Riemann & Weizenböck

- Riemann-Cartan spacetime:
 - Metric g and torsion T determine connection

$$\Gamma^a{}_{bc} = rac{1}{2} g^{ad} (\partial_b g_{dc} + \partial_c g_{bd} - \partial_d g_{bc} - g_{be} T^e{}_{cd} - g_{ce} T^e{}_{bd}) + rac{1}{2} T^a{}_{cb} \,.$$

- \Rightarrow Cartan geometry with Cartan curvature $F = dA + A \wedge A \in \Omega^2(P, \mathfrak{g})$.
- \Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi}g = 0$, $\mathcal{L}_{\xi}T = 0$.

Riemann-Cartan, Riemann & Weizenböck

- Riemann-Cartan spacetime:
 - Metric g and torsion T determine connection

$$\Gamma^a{}_{bc} = rac{1}{2} g^{ad} (\partial_b g_{dc} + \partial_c g_{bd} - \partial_d g_{bc} - g_{be} T^e{}_{cd} - g_{ce} T^e{}_{bd}) + rac{1}{2} T^a{}_{cb} \,.$$

- \Rightarrow Cartan geometry with Cartan curvature $F = dA + A \wedge A \in \Omega^2(P, \mathfrak{g})$.
- \Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi}g = 0$, $\mathcal{L}_{\xi}T = 0$.
- Riemannian spacetime:
 - Metric g determines Levi-Civita connection

$$\Gamma^a{}_{bc} = rac{1}{2} g^{ad} (\partial_b g_{dc} + \partial_c g_{bd} - \partial_d g_{bc}) \,.$$

- \Rightarrow Cartan geometry with Cartan curvature $F = dA + A \land A \in \Omega^2(P, \mathfrak{h})$.
- \Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi}g = 0$.

Riemann-Cartan, Riemann & Weizenböck

- Riemann-Cartan spacetime:
 - Metric g and torsion T determine connection

$$\Gamma^a{}_{bc} = rac{1}{2} g^{ad} (\partial_b g_{dc} + \partial_c g_{bd} - \partial_d g_{bc} - g_{be} T^e{}_{cd} - g_{ce} T^e{}_{bd}) + rac{1}{2} T^a{}_{cb} \,.$$

- \Rightarrow Cartan geometry with Cartan curvature $F = dA + A \land A \in \Omega^2(P, \mathfrak{g})$.
- \Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\varepsilon}g = 0, \mathcal{L}_{\varepsilon}T = 0.$
- Riemannian spacetime:
 - Metric g determines Levi-Civita connection

$$\Gamma^a{}_{bc} = rac{1}{2} g^{ad} (\partial_b g_{dc} + \partial_c g_{bd} - \partial_d g_{bc}) \,.$$

- ⇒ Cartan geometry with Cartan curvature $F = dA + A \land A \in \Omega^2(P, \mathfrak{h})$.
- \Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi}g = 0$.
- Weizenböck spacetime:
 - Vielbein h determines Weizenböck connection

$$\Gamma^a{}_{bc} = h^a_i \partial_c h^i_b$$
.

- \Rightarrow Cartan geometry with Cartan curvature $F = dA + A \land A \in \Omega^2(P, \mathfrak{z})$.
- \Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\varepsilon}h = \lambda h, \lambda \in \mathfrak{h}$.

The observer space model

Model geometry for 3 + 3 + 1-dimensional observer space:

$$\begin{split} \textit{G} = \begin{cases} & SO_0(4,1) & \Lambda > 0 \\ & ISO_0(3,1) & \Lambda = 0 \ , \quad \textit{H} = SO_0(3,1) \, , \quad \textit{K} = SO(3) \, . \\ & SO_0(3,2) & \Lambda < 0 \end{cases} \end{split}$$

 \Rightarrow Klein geometries G/K are maximally symmetric observer spaces.

The observer space model

• Model geometry for 3 + 3 + 1-dimensional observer space:

$$\begin{split} \textit{G} = \begin{cases} & SO_0(4,1) & \Lambda > 0 \\ & ISO_0(3,1) & \Lambda = 0 \ , \quad \textit{H} = SO_0(3,1) \, , \quad \textit{K} = SO(3) \, . \\ & SO_0(3,2) & \Lambda < 0 \end{cases} \end{split}$$

- \Rightarrow Klein geometries G/K are maximally symmetric observer spaces.
- \Rightarrow Split $g = \mathfrak{k} \oplus \mathfrak{y} \oplus \mathfrak{z} \oplus \mathfrak{z}^0$ of the Poincaré algebra:
 - t: spatial rotations.
 - ŋ: Lorentz boosts.
 - 3: spatial translations.
 - 30: temporal translations.

The observer space model

Model geometry for 3 + 3 + 1-dimensional observer space:

$$\label{eq:G} \begin{split} \textit{G} = \begin{cases} & SO_0(4,1) & \Lambda > 0 \\ & ISO_0(3,1) & \Lambda = 0 \ , \quad \textit{H} = SO_0(3,1) \, , \quad \textit{K} = SO(3) \, . \\ & SO_0(3,2) & \Lambda < 0 \end{cases} \end{split}$$

- \Rightarrow Klein geometries G/K are maximally symmetric observer spaces.
- \Rightarrow Split $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{y} \oplus \vec{\mathfrak{z}} \oplus \mathfrak{z}^0$ of the Poincaré algebra:
 - t: spatial rotations.
 - η: Lorentz boosts.
 - 3: spatial translations.
 - 30: temporal translations.
 - Cartan geometry $(\pi: P \to O, A)$ modeled on G/K with $P \subset FO$:
 - \Rightarrow Split $A = \Omega + b + \vec{e} + e^0$ of the Cartan connection.
 - \Rightarrow Induces split $TP = RP \oplus BP \oplus \vec{H}P \oplus H^0P$.

Symmetries of observer space

- Structures induced by Cartan geometry $(\pi : P \rightarrow O, A)$:
 - Tangent bundle split $TO = VO \oplus \vec{H}O \oplus H^0O$.
 - Projectors $P_V, P_{\vec{H}}, P_{H^0}, P_H = P_{\vec{H}} + P_{H^0}$ onto subbundles.
 - Vector bundle isomorphism $\Theta: VO \rightarrow \vec{H}O$.
 - "Time translation" vector field $\mathbf{r} \in \Gamma(H^0O)$.

Symmetries of observer space

- Structures induced by Cartan geometry $(\pi : P \rightarrow O, A)$:
 - Tangent bundle split $TO = VO \oplus \vec{H}O \oplus H^0O$.
 - Projectors $P_V, P_{\vec{H}}, P_{H^0}, P_H = P_{\vec{H}} + P_{H^0}$ onto subbundles.
 - Vector bundle isomorphism $\Theta: VO \to \vec{H}O$.
 - "Time translation" vector field $\mathbf{r} \in \Gamma(H^0O)$.
- $\Xi \in \text{Vect}(O)$ generates "spacetime" diffeomorphism if:
 - Boost component of Ξ is time derivative of spatial translation:

$$P_H \circ \mathcal{L}_{\mathbf{r}}(P_H \circ \Xi) = \Theta \circ P_V \circ \Xi$$
.

■ Ξ does not depend on vertical directions:

$$P_H \circ \mathcal{L}_{\Upsilon}(P_H \circ \Xi) = 0$$
 for $\Upsilon \in \Gamma(VO)$.

Symmetries of observer space

- Structures induced by Cartan geometry $(\pi : P \rightarrow O, A)$:
 - Tangent bundle split $TO = VO \oplus \vec{H}O \oplus H^0O$.
 - Projectors $P_V, P_{\vec{H}}, P_{H^0}, P_H = P_{\vec{H}} + P_{H^0}$ onto subbundles.
 - Vector bundle isomorphism $\Theta: VO \to \vec{H}O$.
 - "Time translation" vector field $\mathbf{r} \in \Gamma(H^0 O)$.
- $\Xi \in \text{Vect}(O)$ generates "spacetime" diffeomorphism if:
 - Boost component of Ξ is time derivative of spatial translation:

$$P_H \circ \mathcal{L}_{\mathbf{r}}(P_H \circ \Xi) = \Theta \circ P_V \circ \Xi$$
.

■ Ξ does not depend on vertical directions:

$$P_H \circ \mathcal{L}_{\Upsilon}(P_H \circ \Xi) = 0$$
 for $\Upsilon \in \Gamma(VO)$.

- Symmetry of Cartan geometry:
 - \equiv is tangent to $P \subset FO$.
 - A is invariant under $\bar{\Xi}$, i.e., $\mathcal{L}_{\bar{\Xi}}A = 0$.

- Symmetry of spacetime M:
 - Generated by vector field $\xi \in \text{Vect}(M)$.
 - Induces lifted vector fields $\hat{\xi} \in \text{Vect}(TM)$ and $\bar{\xi} \in \text{Vect}(FM)$.

- Symmetry of spacetime M:
 - Generated by vector field $\xi \in \text{Vect}(M)$.
 - Induces lifted vector fields $\hat{\xi} \in \text{Vect}(TM)$ and $\bar{\xi} \in \text{Vect}(FM)$.
- First order reductive Cartan geometry:
 - Principal bundle $\pi: P \to M$ is admissible frame bundle.
 - Split $A = \omega + e$ of Cartan connection.
 - e corresponds to solder form.

- Symmetry of spacetime *M*:
 - Generated by vector field $\xi \in \text{Vect}(M)$.
 - Induces lifted vector fields $\hat{\xi} \in \text{Vect}(TM)$ and $\bar{\xi} \in \text{Vect}(FM)$.
- First order reductive Cartan geometry:
 - Principal bundle $\pi: P \to M$ is admissible frame bundle.
 - Split $A = \omega + e$ of Cartan connection.
 - e corresponds to solder form.
- Symmetry of Cartan geometry:
 - Lifted vector field $\bar{\xi}$ is tangent to P.
 - Cartan connection is invariant under $\bar{\xi}$.

- Symmetry of spacetime M:
 - Generated by vector field $\xi \in \text{Vect}(M)$.
 - Induces lifted vector fields $\hat{\xi} \in \text{Vect}(TM)$ and $\bar{\xi} \in \text{Vect}(FM)$.
- First order reductive Cartan geometry:
 - Principal bundle $\pi: P \to M$ is admissible frame bundle.
 - Split $A = \omega + e$ of Cartan connection.
 - e corresponds to solder form.
- Symmetry of Cartan geometry:
 - Lifted vector field $\bar{\xi}$ is tangent to P.
 - Cartan connection is invariant under $\bar{\xi}$.
- Applications:
 - Riemann-Cartan geometry Einstein-Cartan gravity.
 - Riemannian geometry General relativity.
 - Weizenböck geometry Teleparallel gravity.
 - Observer space geometry Finsler gravity.

- Symmetry of spacetime M:
 - Generated by vector field $\xi \in \text{Vect}(M)$.
 - Induces lifted vector fields $\hat{\xi} \in \text{Vect}(TM)$ and $\bar{\xi} \in \text{Vect}(FM)$.
- First order reductive Cartan geometry:
 - Principal bundle $\pi: P \to M$ is admissible frame bundle.
 - Split $A = \omega + e$ of Cartan connection.
 - e corresponds to solder form.
- Symmetry of Cartan geometry:
 - Lifted vector field $\bar{\xi}$ is tangent to P.
 - Cartan connection is invariant under $\bar{\xi}$.
- Applications:
 - Riemann-Cartan geometry Einstein-Cartan gravity.
 - Riemannian geometry General relativity.
 - Weizenböck geometry Teleparallel gravity.
 - Observer space geometry Finsler gravity.
- Further research topics:
 - Construct observer spaces with particular symmetries.
 - Local Lorentz invariance of teleparallel theories?