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Motivation

So far unexplained cosmological observations:
Accelerating expansion of the universe
Homogeneity of cosmic microwave background

Models for explaining these observations:
ΛCDM model / dark energy
Inflation

Physical mechanisms are not understood:
Unknown type of matter?

Modification of the laws of gravity?

Scalar field in addition to metric mediating gravity?
Quantum gravity effects?

Idea here: modification of the geometric structure of spacetime!
Replace metric spacetime geometry by Finsler geometry.
Similarly: replacing flat spacetime by curved spacetime led to GR.
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Fluids are everywhere

Perfect fluid:
No shear stress, no friction.
Characterized by density ρ and pressure p.

Dust, dark matter: p = 0.
Radiation: p = 1

3ρ.
Dark energy: p < − 1

3ρ.

Used in cosmology, parameterized post-Newtonian formalism. . .

Collisionless fluid:
Model for dark matter.
Used in structure formation. . .

Maxwell-Boltzmann gas:
Collisions described by Boltzmann equation.
Used in structure formation, atmosphere dynamics. . .

Charged, multi-component gas:
Plasma, interacting gas including recombination / ionization.
Used in stellar dynamics, pre-CMB era models. . .
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From spacetime to observer space

Fluid dynamics naturally lift to tangent bundle:
Fluids conveniently modeled by particle dynamics (SPH. . . ).
Physical fluids constituted by particles.
Particle trajectories lift to tangent bundle: γ  (γ, γ̇).

⇒ Dynamics on the tangent bundle described by first order ODE.

Velocity dependence of physical measurements:
Physical observables are tensor components.
Measured tensor components depend on observer velocity.
Physical observer velocities are future unit timelike vectors.

⇒ Observer space is space of physical velocities.

Quantum gravity: possible non-tensorial observer dependence.
Modified gravity theories may have more general observer spaces.

⇒ Physical observables become functions on observer space!
Space of observers corresponds to particle tangent vectors.

⇒ Consider fluid dynamics on observer space!
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Finsler spacetimes

Finsler geometry of space widely used in physics:
Approaches to quantum gravity
Electrodynamics in anisotropic media
Modeling of astronomical data

Finsler geometry generalizes Riemannian geometry:
Geometry described by Finsler function on the tangent bundle.
Finsler function measures length of tangent vectors.
Well-defined notions of connections, curvature, parallel transport. . .

Finsler spacetimes are suitable backgrounds for:
Gravity
Electrodynamics
Other matter field theories

Possible explanations of yet unexplained phenomena:
Fly-by anomaly
Galaxy rotation curves
Accelerating expansion of the universe
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The clock postulate

Proper time along a curve in Lorentzian spacetime:

τ =

∫ t2

t1

√
−gab(x(t))ẋa(t)ẋb(t)dt .

Finsler geometry: use a more general length functional:

τ =

∫ t2

t1
F (x(t), ẋ(t))dt .

Finsler function F : TM → R+.
Parametrization invariance requires homogeneity:

F (x , λy) = λF (x , y) ∀λ > 0 .
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Finsler spacetimes

Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth ’11]

⇒ Finsler metric with Lorentz signature:

gF
ab(x , y) =

1
2
∂

∂ya
∂

∂yb F 2(x , y) .

⇒ Notion of timelike, lightlike, spacelike tangent vectors.

Unit vectors y ∈ TxM defined by

F 2(x , y) = gF
ab(x , y)yayb = 1 .

⇒ Set Ωx ⊂ TxM of unit timelike vectors at x ∈ M.
Ωx contains a closed connected component Sx ⊆ Ωx .

 Causality: Sx corresponds to physical observers.
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Geometry on the tangent bundle

Cartan non-linear connection:

Na
b =

1
4
∂̄b

[
gF ac(yd∂d ∂̄cF 2 − ∂cF 2)

]

⇒ Split of the tangent and cotangent bundles:
Tangent bundle: TTM = HTM ⊕ VTM

δa = ∂a − Nb
a∂̄b , ∂̄a

Cotangent bundle: T ∗TM = H∗TM ⊕ V ∗TM

dxa , δya = dya + Na
bdxb

Sasaki metric:

G = −gF
ab dxa ⊗ dxb −

gF
ab

F 2 δy
a ⊗ δyb

Geodesic spray:
S = yaδa
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Finsler geometry in general coordinates

Encode induced coordinates using natural tensor fields on TM:
Tangent structure J = ∂̄a ⊗ dxa.
Cotangent structure J∗ = dxa ⊗ ∂̄a.
Liouville vector field c = ya∂̄a.

Write tensor fields in arbitrary coordinates om TM.

Write Finsler geometry using these tensor fields:
Homogeneity of Finsler function: cF = F .
Cartan one-form Θ = 1

2 J∗ (dF 2
)
.

Cartan two-form Ω = dΘ is symplectic.
Geodesic spray: unique vector field s such that

ιsΩ = −dF 2/2 .

Projectors h on HTM and v on VTM.
Adjoint structure: unique (1,1) tensor field θ such that

θ ◦ h = v ◦ θ = 0 , θ ◦ J = v , J ◦ θ = h .

Sasaki metric:

G(X ,Y ) = Ω(X , J(Y ))− Ω(X , θ(Y ))/F 2 .
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Geometry on observer space

Recall from the definition of Finsler spacetimes:
Set Ωx ⊂ TxM of unit timelike vectors at x ∈ M.
Physical observers correspond to Sx ⊆ Ωx .

Definition of observer space:

O =
⋃

x∈M

Sx ⊂ TM .

Sasaki metric G̃ on O given by pullback of G to O.
Volume form Σ of Sasaki metric G̃.
Geodesic spray S restricts to Reeb vector field r on O.
Geodesic hypersurface measure ω = ιrΣ.
Note that LrΣ = 0 and dω = 0.
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From metric to Finsler geometry
Tangent bundle geometry:

Finsler function:

F (x , y) =
√
|gab(x)yayb|

Finsler metric:

gF
ab(x , y) =

{
−gab(x) y timelike
gab(x) y spacelike

Cartan non-linear connection:

Na
b(x , y) = Γa

bc(x)yc

Observer space:
Space Ωx of unit timelike vectors at x ∈ M.
Space Sx of future unit timelike vectors at x ∈ M.
Observer space O: union of shells Sx .
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Definition of fluids

Single-component fluid:
Constituted by classical, relativistic particles.
Particles have equal properties (mass, charge, . . . ).
Particles follow piecewise geodesic curves.
Endpoints of geodesics are interactions with other particles.

Collisionless fluid:
Particles do not interact with other particles.

⇒ Particles follow geodesics.
Multi-component fluid: multiple types of particles.
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Geodesics on observer space

Dynamics of fluids depends on geodesic equation.
Geodesic equation for curve x(τ) on spacetime M:

ẍa + Na
b(x , ẋ)ẋb = 0 .

Canonical lift of curve to tangent bundle TM:

x , y = ẋ .

Lift of geodesic equation:

ẋa = ya , ẏa = −Na
b(x , y)yb .

⇒ Solutions are integral curves of vector field:

ya∂a − ybNa
b∂̄a = yaδa = S .

Tangent vectors are future unit timelike: (x , y) ∈ O.
⇒ Particle trajectories are piecewise integral curves of r on O.
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One-particle distribution function

Recall: ω = ιrΣ ∈ Ω6(O) unique 6-form such that:
ω non-degenerate on every hypersurface not tangent to r.
dω = 0.

Define one-particle distribution function φ : O → R+ such that:

For every hypersurface σ ⊂ O,

N[σ] =

∫
σ

φω

# of particle trajectories through σ.

Counting of particle trajectories respects hypersurface orientation.

For multi-component fluids: φi for each component i .
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Collisions & the Liouville equation

Collision in spacetime! interruption in observer space.

!

For any open set V ∈ O,∫
∂V
φω =

∫
V

d(φω) =

∫
V
LrφΣ

# of outbound trajectories - # of inbound trajectories.
⇒ Collision density measured by Lrφ.

Collisionless fluid: trajectories have no endpoints, Lrφ = 0.
⇒ Simple, first order equation of motion for collisionless fluid.
⇒ φ is constant along integral curves of r.
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Examples of fluids

Geodesic dust fluid:
φ(x , y) ∼ δ(y−u(x)) .

“Jenkka”

Collisionless fluid:
Lrφ = 0 .

“Polkka”

Interacting fluid:
Lrφ 6= 0 .

“Humppa”
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2 Finsler spacetimes

3 Kinetic theory of fluids

4 Cosmologically symmetric case
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Symmetry generating vector fields

Spherical coordinates (xa) = (t , r , θ, ϕ).
Generators of cosmological symmetry:

ξ1 =
√

1− kr2
(

sin θ cosϕ∂r +
cos θ cosϕ

r
∂θ −

sinϕ
r sin θ

∂ϕ

)
,

ξ2 =
√

1− kr2
(

sin θ sinϕ∂r +
cos θ sinϕ

r
∂θ +

cosϕ
r sin θ

∂ϕ

)
,

ξ3 =
√

1− kr2
(

cos θ∂r −
sin θ

r
∂θ

)
,

ξ4 = sinϕ∂θ +
cosϕ
tan θ

∂ϕ ,

ξ5 = − cosϕ∂θ +
sinϕ
tan θ

∂ϕ ,

ξ6 = ∂ϕ .

 Canonical lifts to TM are lengthy in induced coordinates (xa, ya).
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Non-induced tangent bundle coordinates

Non-induced coordinates (Z A) = (̂t , r̂ , θ̂, ϕ̂, ŷ , û, v̂ , ŵ) on TM:

t = t̂ , r = r̂ , θ = θ̂ , ϕ = ϕ̂ , yθ =
ŵ
r̂

sin û cos v̂ ,

y t = ŷ , y r = ŵ cos û
√

1− k r̂2 , yϕ =
ŵ

r̂ sin θ̂
sin û sin v̂ .

⇒ Canonical lifts of cosmological symmetry generators simplify.
⇒ Most general cosmologically symmetric function f : TM → R:

f = f (̂t , ŵ , ŷ) .

⇒ Describe Finsler geometry using these non-induced coordinates.
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Tangent bundle geometry

Tangent structure:

JA
B =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 − sin û

ŵ
√

1−k r̂2
r̂ cos û cos v̂

ŵ
r̂ cos û sin v̂ sin θ̂

ŵ 0 0 0 0

0 0 − r̂ sin v̂
ŵ sin û

r̂ cos v̂ sin θ̂
ŵ sin û 0 0 0 0

0 cos û√
1−k r̂2

r̂ sin û cos v̂ r̂ sin û sin v̂ sin θ̂ 0 0 0 0


Cotangent structure: J∗A

B = JB
A.

Liouville vector field: c = ŷ ∂̂y + ŵ ∂̂w .
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Finsler geometry and geodesic spray

Most general cosmologically symmetric Finsler function:

F = F (̂t , ŷ , ŵ) .

Homogeneity condition:

cF = F ⇒ F = ŷ F̃ (̂t , ŵ/ŷ) .

⇒ Geodesic spray:

S = ŷ ∂̂t + ŵ cos û
√

1− k r̂2∂̂r +
ŵ sin û cos v̂

r̂
∂̂θ +

ŵ sin û sin v̂
r̂ sin θ̂

∂̂ϕ

− ŵ sin û
√

1− k r̂2

r̂
∂̂u −

ŵ sin û sin v̂
r̂ tan θ̂

∂̂v − ŷ2 F̃ww F̃t − F̃w F̃tw

F̃ F̃ww
∂̂y

− ŷ
ŵ F̃t F̃ww + ŷ F̃ F̃tw − ŵF̃w F̃tw

F̃ F̃ww
∂̂w .
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Observer space and Reeb vector field

Introduce new coordinates:

t̃ = t̂ , r̃ = r̂ , θ̃ = θ̂ , ϕ̃ = ϕ̂ , ũ = û , ṽ = v̂ ,

F (̂t , ŷ , ŵ) =

ỹ = ŷ F̃
(

t̂ ,
ŵ
ŷ

)
, w̃ =

ŵ
ŷ
.

⇒ Observer space: submanifold with ỹ ≡ 1.
⇒ Reeb vector field:

r =
1
F̃

(
w̃ cos ũ

√
1− k r̃2∂̃r +

w̃ sin ũ cos ṽ
r̃

∂̃θ +
w̃ sin ũ sin ṽ

r̃ sin θ̃
∂̃ϕ

− w̃ sin ũ
√

1− k r̃2

r̃
∂̃u −

w̃ sin ũ sin ṽ
r̃ tan θ̃

∂̃v −
F̃tw

F̃ww
∂̃w + ∂̃t

)
.
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r̃

∂̃θ +
w̃ sin ũ sin ṽ
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r̃ tan θ̃

∂̃v −
F̃tw

F̃ww
∂̃w + ∂̃t

)
.

Manuel Hohmann (University of Tartu) Cosmological Finsler fluids 14. January 2016 25 / 29



Collisionless fluid

Most general fluid obeying cosmological symmetry:

φ = φ(t , w̃) .

Collisionless fluid satisfies Liouville equation:

0 = Lrφ =
1
F̃

(
φt −

F̃tw

F̃ww
φw

)
.

Example: collisionless dust fluid φ(x , y) ∼ ρ(x)δSx (y ,u(x)):

u(t) =
1

F̃ (t ,0)
∂t , ∂t

(
ρ(t)

√
gF (t ,0)

)
= 0 .
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Summary

Finsler spacetimes:
Define geometry by length functional.
Observer space O of physical four-velocities.
Geodesics are integral curves of vector field on O.
Vector field obtained using tangent bundle geometry.

Fluid dynamics:
Model fluids by point mass trajectories.
Define fluid density on observer space.
Collisionless fluid satisfies Liouville equation.

Cosmology:
Useful choice of non-induced coordinates on TM.
All quantities depend on only two coordinates t , w̃ .
Simple equation of motion for collisionless fluid matter.
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Outlook

Derivation of Finsler-Friedmann equations:
Consider Finsler geometric theory of gravity.
Construct fluid energy-momentum as source of gravity.
Fully general Finsler-Friedmann equations?

Look for simple models:
Finsler perturbation of metric background.
Simple model Finsler geometry from higher rank tensors.
Length measure using metric and one-form.

Solve for cosmological dynamics:
Dark energy?
Inflation?
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