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0 Introduction
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@ Modify spacetime geometry to address open problems:
o Origin of dark matter and dark energy.
@ Homogeneity of the cosmic microwave background and inflation.
o Fly-by anomaly in the solar system.
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@ Modify spacetime geometry to address open problems:
o Origin of dark matter and dark energy.
@ Homogeneity of the cosmic microwave background and inflation.
o Fly-by anomaly in the solar system.
@ Choose geometry which keeps well-known notions:
Divide tangent spaces into space-, time-, lightlike vectors.
Provide notions of future and past.
Distinguish curves corresponding to physical trajectories.
Define proper time along physical trajectories.
Determine trajectories of freely falling test masses.
Geometry is determined by matter distribution.
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@ Modify spacetime geometry to address open problems:
o Origin of dark matter and dark energy.
@ Homogeneity of the cosmic microwave background and inflation.
o Fly-by anomaly in the solar system.
@ Choose geometry which keeps well-known notions:
e Divide tangent spaces into space-, time-, lightlike vectors. v/
e Provide notions of future and past. v/
e Distinguish curves corresponding to physical trajectories. v/
e Define proper time along physical trajectories. v/
e Determine trajectories of freely falling test masses. v/
o Geometry is determined by matter distribution. v/
@ Finsler spacetime geometry provides all these notions:
Finsler length functional measures length of curves.
Finsler metric has Lorentz signature.
Orientability allows to distinguish future and past.
Previously mentioned notions define future timelike curves.
Finsler geodesics determine notion of free fall.
Gravity theory on Finsler spacetimes exists.
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From metric to Finsler geometry

The clock postulate

Proper time along a curve in Lorentzian spacetime:

b
bl = [ y~au GO,
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From metric to Finsler geometry
The clock postulate

Proper time along a curve in Lorentzian spacetime:

T[’Y]z/tz\/ 9w (Y (B)) (1) (1)t .

Generalized clock postulate: Finsler length measure

@ Finsler geometry: use a more general length functional:

b
)= [ F(y(),%(t))adt.

t
@ Finsler function F : TM — R+.

@ Parametrization invariance requires homogeneity:
F(x,\y) = AF(x,y) ¥YA>0.
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Finsler geodesics

Cartan non-linear connection

@ Extremal curve of length functional satisfies geodesic equation:
() + N, (y(1),7(t)) = 0.
@ N#,: coefficients of Cartan non-linear connection.
@ Horizontal-vertical split of TTM = HTM & VTM:
0 , 0 ~ 0
“oxe Mgy T g

Op
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Finsler geodesics
Cartan non-linear connection

@ Extremal curve of length functional satisfies geodesic equation:
() 4+ NEL((1),5(1) = 0.
@ N#,: coefficients of Cartan non-linear connection.
@ Horizontal-vertical split of TTM = HTM & VTM:
0 , 0 = 0
o= Ny =Gy

Geodesic spray

@ Canonical lift r'# = (y*,4*) of geodesic to TM satisfies
ra(t) - s3(r(t) =0
@ S(x,y) = y"o, € Vect(TM): geodesic spray.
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Finsler gravity action and field equations

Finsler gravity action

ng/zRVoI(G|z).

@ X: Unit tangent bundle TM|g_;.
@ @G: Sasaki metric on TM.
@ R: Scalar curvature of Cartan non-linear connection.
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Finsler gravity action and field equations

Finsler gravity action
SG:/RVOI(G|2).
pN

@ X: Unit tangent bundle TM|r_;.
@ @G: Sasaki metric on TM.
@ R: Scalar curvature of Cartan non-linear connection.

Gravitational field equations ipreier, wonfarn 1]

—% {6R + G* |VEVER + 2F20°V 8, + 2V} (8°Vh8,) | } = 7.
@ a,b,c,...: Coordinate indices 0,...,7 on TM.

@ J4,: Tangent structure.

@ S?2: Geodesic spray.

@ $.: Landsberg covector.

@ V" VV: Horizontal and vertical Berwald derivative.

@ 7: Energy-momentum scalar.
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Observer space

Finsler metric

@ Metric structure on Finsler spacetimes:
1 -
g,llt_-u = EaﬂaVFz :
@ Finsler metric g/,FJ, has Lorentz signature.
= Definition of timelike, lightlike, spacelike tangent vectors.
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Observer space

@ Metric structure on Finsler spacetimes:
1 -
gh, = Eauasz.
@ Finsler metric g[fl, has Lorentz signature.
= Definition of timelike, lightlike, spacelike tangent vectors.

Observer space

@ Closed shell Sy ¢ TyM of future unit timelike vectors for all x € M.
@ Space of physical observer velocities:

o= J s

XeEM
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Relation to Cartan geometry

Observer frame bundle

@ Set P of frames f of TM such that:

e Time component f € O.
e Frame is orthonormal with respect to Finsler metric:

fgfggiv = ~TNapB -
@ Principal SO(3) bundle 7 : P — O, f — fy.
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Relation to Cartan geometry
Observer frame bundle

@ Set P of frames f of TM such that:
e Time component f € O.

e Frame is orthonormal with respect to Finsler metric:
fgfgg/fv = —Nap -
@ Principal SO(3) bundle 7 : P — O, f — f.

Cartan connection s

@ Cartan connection A = w + e € Q'(P, g) with G = 1SO(3,1):

e” = feax*,

A 1 U £0
wPo =5 (mﬁ — P, 5) F19 af + n57f (5,95, — 6,95, dx*

@ Finsler gravity action can be written completely in terms of A.
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9 Cosmological symmetry
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Cosmological symmetry

Cosmological coordinates on TM 15

@ Spherical coordinates t, r, 9, o on M.
@ Coordinates y, u, v, w on each TyM:

yor+w [cos uv 1 —kr2d, + g (cos VOy + z::—;apﬂ e TxM.
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Cosmological symmetry
Cosmological coordinates on TM ks

@ Spherical coordinates t, r, 9, o on M.
@ Coordinates y, u, v, w on each T,M:

yor +w [cos uv 1 — kréo, + Sm% (cos VOy + z::;&pﬂ c TyM.

Cosmologically symmetric Finsler spacetime

@ Symmetry under rotations and translations (six vector fields).
@ Most general Finsler function: F(t,y, w).

@ Homogeneity condition: F(t, \y, Aw) = A\F(t,y,w).

@ Express Finsler function as F(t,y, w) = yF(t,w/y).
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Observer space coordinates

Observer trajectories

@ Tangent vectors are future unit timelike vectors: F = 1.
= Physical tangent vectors lie in observer space O.
@ Introduce suitable coordinates on observer space.
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Observer space coordinates

Observer trajectories

@ Tangent vectors are future unit timelike vectors: F = 1.
= Physical tangent vectors lie in observer space O.
@ Introduce suitable coordinates on observer space.

Observer space coordinates m s

@ Introduce coordinates:
T:t,Fx’:r,@:ﬁ,cb:go,Y:yI:_(t,‘;/> U=uV=v,W=w/y.

= Observer space is submanifold with ¥ = 1.
= Coordinates become singular on light cone, since Y = 0.
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Geodesics on cosmological background

Radial geodesic

@ Consider radial motion: ¥ = 7/2,0 =0,u=0,v = 0.
@ Geodesic equation:

t=y, r=wyVv1—k?,

y:_yQﬁWWﬁjN—FWFtW’ W:_yWIEt,EWW‘f‘}iEF_tW_WIEWF_tW'
FFuyw IF B
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Geodesics on cosmological background

Radial geodesic

@ Consider radial motion: ¥ = 7/2,0 =0,u=0,v = 0.
@ Geodesic equation:

t=y, r=wv1—kr,
y:_yQIEWwI:?N—I':_wF_tW’ W:_yW,Et,EWW‘F}/NEﬁtW_WIEWF_tw.
FFuyw (E Py

Timelike radial geodesic

@ Geodesic equation in observer coordinates:

T:;, A= V;Y\A “KRE, V-0, W=_1rw
@ Use arc length parametrization and fix Y = 1:

'T:,l__, R:I;:_V\M—kl??, W=
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Fluid dynamics with cosmological symmetry

KlnetIC theory Of f|UIdS [Ehlers '71], [Sarbach, Zannias "13]

@ Consider fluid as constituted by point particles.

@ Particles follow piecewise geodesics between collisions.
@ Continuum limit described by density ¢ : O — R ™.

@ Collisionless fluid satisfies Liouville equation Lg¢ = 0.
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Fluid dynamics with cosmological symmetry

KlnetIC theory Of f|UIdS [Ehlers '71], [Sarbach, Zannias "13]

@ Consider fluid as constituted by point particles.

@ Particles follow piecewise geodesics between collisions.
@ Continuum limit described by density ¢ : O — R™.

@ Collisionless fluid satisfies Liouville equation Lg¢ = 0.

Cosmologically symmetric Finsler fluids s

@ Most general cosmologically symmetric fluid: ¢ = ¢(T, W).
@ Liouville equation: ¢;Fyw = dwFin.
@ Example: collisionless dust fluid ¢(x, y) ~ p(x)ds, (¥, u(x)):

1
u(t) = g at(p(t) gF(t,O))—o.
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Gravitational dynamics

Finsler gravity [Pfeifer, Wohlfarth '11]

@ Action:

SG:/ZRVOI(G]Z).

@ Field equations:

—% {6R + G [V4VER + 2F2U°.Vh 8, + 2V (S°VAS, ) |} = T
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Gravitational dynamics

Finsler gravity [Pfeifer, Wohlfarth '11]

@ Action:

ng/RVoI(Gyz).
bu
@ Field equations:

1

— =5 {6R+ G® | VEVER + 2F2U°,Vh8, + 2V (S°V18,) | } = T

Cosmological dynamics

@ Structure of cosmological equations: G[F](T, W) = T[F, ¢](T, W).
@ Difficulties:

o Geometry scalar G is complicated even for cosmology.
e No “standard construction” for 7~ of non-metric kinetic fluid.
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Example: FLRW spacetime

@ Tensor field: metric g,,,..
@ Cosmology: FLRW metric g = —dt ® dt + &2(t)y;[x]ax’ ® dx/.
@ Finsler function:

Fx,y) = \Jlgwyry’) = /1 - &(T)W?|
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Example: FLRW spacetime

@ Tensor field: metric g,,, .
@ Cosmology: FLRW metric g = —dt ® dt + a2(t);[x]dx’ @ dx/.
@ Finsler function:

Fo,y) = lguyry | = /11 - &(Tywe|

Gravitational dynamics

@ Geometry scalar:

6 . .2_ 23..

= Reproduce structure of Friedmann equations.
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Example: cosmologies with one-forms

Ingredients

@ Tensor fields: metric g,,,, one-form A,,.
@ Cosmology:

o FLRW metric g = —dt ® dt + &(t)y;[x]ax’ @ dx’.
o Hypersurface normal A = b(t)dt.
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Example: cosmologies with one-forms

Ingredients

@ Tensor fields: metric g,,,, one-form A,,.
@ Cosmology:

o FLRW metric g = —dt ® dt + &(t)y;[x]ax’ @ dx’.
o Hypersurface normal A = b(t)dt.

Randers length measure randers 41]

Flx,y) = \/Iguy y’| + Auyt = /|1 — @(T)W?| + b(T)

Bogoslovsky length measure sogosiovsky 771

P = (A (\/m>1q = b%(T) ( 1 - a2(r)W2|>1q
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e Spherical symmetry
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Spherical symmetry

Spherical coordinates on TM

@ Spherical coordinates t, r, 9, o on M.
@ Coordinates y, u, v, w on each T,M:

sinv

Yot + uor + g (cos VOy + o

8>€TXM.
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Spherical symmetry
Spherical coordinates on TM

@ Spherical coordinates t, r, 9, o on M.
@ Coordinates y, u, v, w on each TyM:
sinv

w [
YOt + uor + - (cos vOy + Sinﬁag)) e TxM.

Spherically symmetric Finsler spacetime

@ Symmetry under rotations around origin (three vector fields).

@ Most general Finsler function: F(t,r,y,u, w).

@ Homogeneity condition: F(t,r,\y, Au,\w) = AF(t,r,y, u, w).
@ Express Finsler function as F(t,r,y,u,w) = yF(t,r,u/y,w/y).
e Static case: F(r,y,u,w) = yF(r,uly,w/y).
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Example: static circular orbits

Circular geodesic motion

@ Circular motion: ¥ = /2, u=0,v =7/2.
@ Orbit condition: wF,, + ryF, = 0.

@ Geodesic equation: t =y, = w/r.

@ Orbital period: 27ry/w.
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Example: static circular orbits
Circular geodesic motion

@ Circular motion: ¥ = /2, u=0,v =7/2.
@ Orbit condition: wF,, + ryF, = 0.

@ Geodesic equation: t =y, = w/r.

@ Orbital period: 27ry/w.

Example: Schwarzschild spacetime

@ Schwarzschild length function:

F'(F?,U,W):\/1———W2.

@ Orbit condition: My? = rw?.
@ Orbital period: 27+/r3/M.
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Outline

e Conclusion
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@ Finsler spacetimes:
e Based on Finsler length function.
o Make use of tensors on the tangent bundle.
o Generalize standard notions of causality, observers and gravity.
@ Cosmologically symmetric Finsler spacetimes:
Geometry defined by function F(T, W).
Simple form of geodesic equation.
Simple equation of motion for fluid dynamics.
Gravitational field equations are rather complicated.
e Simple examples can be derived from tensorial geometries.
@ Spherically symmetric Finsler spacetimes:
o Geometry defined by function F(T, R, U, W).
e Static geometry reduces to F(R, U, W).
e Simple condition for circular orbits.
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@ Finsler fluid dynamics:

e Derive dynamics for well-known types of fluids.

e Construct energy-momentum scalar for general kinetic fluid.
@ Cosmologically symmetric Finsler spacetimes:

e Find cosmologically symmetric solutions.

o Calculate luminosity-redshift relation.

o Calculate cosmological parameters.
@ Spherically symmetric Finsler spacetimes:
Find spherically symmetric vacuum solutions.
Calculate analogue of post-Newtonian limit.
Calculate geodesic motion and address fly-by anomaly.
Investigate whether Birkhoff theorem holds.
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