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Motivation

Modify spacetime geometry to address open problems:
Origin of dark matter and dark energy.
Homogeneity of the cosmic microwave background and inflation.
Fly-by anomaly in the solar system.

Choose geometry which keeps well-known notions:

Divide tangent spaces into space-, time-, lightlike vectors.
Provide notions of future and past.
Distinguish curves corresponding to physical trajectories.
Define proper time along physical trajectories.
Determine trajectories of freely falling test masses.
Geometry is determined by matter distribution.

Finsler spacetime geometry provides all these notions:

Finsler length functional measures length of curves.
Finsler metric has Lorentz signature.
Orientability allows to distinguish future and past.
Previously mentioned notions define future timelike curves.
Finsler geodesics determine notion of free fall.
Gravity theory on Finsler spacetimes exists.
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From metric to Finsler geometry

The clock postulate

Proper time along a curve in Lorentzian spacetime:

ds2 = −gµνdxµdxν ⇒ s[γ] =

∫ t2

t1

√
−gµν(γ(t))γ̇µ(t)γ̇ν(t)dt .

Generalized clock postulate: Finsler length measure

Finsler geometry: use a more general length functional:

s[γ] =

∫ t2

t1
F (γ(t), γ̇(t))dt .

Finsler function F : TM → R+.
Parametrization invariance requires homogeneity:

F (x , λy) = λF (x , y) ∀λ > 0 .
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Geodesic motion

Cartan non-linear connection

Extremal curve of length functional satisfies geodesic equation:

γ̈µ(t) + Nµ
ν(γ(t), γ̇(t)) = 0 .

Nµ
ν : coefficients of Cartan non-linear connection.

Horizontal-vertical split of TTM = HTM ⊕ VTM:

δµ =
∂

∂xµ
− Nν

µ
∂

∂yν
, ∂̄µ =

∂

∂yµ
.

Geodesic spray

Canonical lift Γa = (γµ, γ̇µ) of geodesic to TM satisfies

Γ̇a(t)− Sa(Γ(t)) = 0
S(x , y) = yµδµ ∈ Vect(TM): geodesic spray.
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Cosmological symmetry

Cosmological coordinates on TM [MH ’15]

Spherical coordinates t , r , ϑ, ϕ on M.
Coordinates y ,u, v ,w on each TxM:

y∂t + w
[
cos u

√
1− kr2∂r +

sin u
r

(
cos v∂ϑ +

sin v
sinϑ

∂ϕ

)]
∈ TxM .

Cosmologically symmetric Finsler spacetime

Symmetry under rotations and translations (six vector fields).
Most general Finsler function: F (t , y ,w).
Homogeneity condition: F (t , λy , λw) = λF (t , y ,w).
Express Finsler function as F (t , y ,w) = yF̃ (t ,w/y).
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Geodesics on cosmological background

Geodesic equation

ṫ = y , ṙ = w
√

1− kr2 cos u , u̇ = −w
√

1− kr2 sin u
r

θ̇ =
w sin u cos v

r
, ϕ̇ =

w sin u sin v
r sin θ

, v̇ = −w sin u sin v
r tan θ

,

ẏ = −y2 F̃ww F̃t − F̃w F̃tw

F̃ F̃ww
, ẇ = −y

wF̃t F̃ww + yF̃ F̃tw − wF̃w F̃tw

F̃ F̃ww
.

Radial geodesics

Purely radial motion: ϑ = π/2, ϕ = 0,u = 0, v = 0.
Co-moving velocity:

dr
dt

=
ṙ
ṫ

=
w
y

√
1− kr2 .
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Light propagation

Conservation of the Finsler function

Geodesic spray leaves Finsler function invariant: LSF = 0.
⇒ Finsler function is constant along geodesics.

Finsler function satisfies F ≡ 0 along null geodesics.

Solution of null direction condition

Solve 0 = F = yF̃ (t ,w/y) with ṫ = y > 0 for all t ∈ R.
⇒ Solution W̊ (t) satisfies F̃ (t , W̊ (t)) ≡ 0.

Resulting curve on spacetime M

dr
dt

= W̊ (t)
√

1− kr2 ⇒
∫ ro

re

dr√
1− kr2

=

∫ to

te
W̊ (t) dt .
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Redshift of a light signal

Propagation of two wave packets

Source and observer and fixed co-moving coordinates re and ro.
Wave packets emitted at times te,1 and te,2 from re.
Wave packets observed at times to,1 and to,2 at ro.

Both packets travel identical coordinate distances

0 =

∫ to,2

te,2
W̊ (t)dt −

∫ to,1

te,1
W̊ (t)dt =

∫ to,2

to,1
W̊ (t)dt −

∫ te,2

te,1
W̊ (t)dt ≈ W̊ (to)∆to − W̊ (te)∆te .

Cosmological redshift

Compare period of emitted and observed signals:

1 + z =
∆to
∆te

=
W̊ (te)

W̊ (to)
.
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Magnitude of a distant source

Ratio P/L of received vs. emitted power

Rate of photons decreased by factor 1 + z.
Energy of each photon decreased by factor 1 + z.

⇒ Ratio P/L = (1 + z)−2.

Area of illuminated sphere

Finsler metric for co-moving receiver (with F̃ F̃ww < 0 for Lorentzian signature):

gF
ab dxa ⊗ dxb = F̃ 2 dt ⊗ dt + F̃ F̃ww

[
dr ⊗ dr
1− kr2 + r2

(
dθ ⊗ dθ + sin2 θ dφ⊗ dφ

)]
.

Surface area of co-moving illuminated sphere: A = 4πr2|F̃ F̃ww |.

Observed magnitude

m = −5
2

log10
P
A

+ const. = 5 log10[r(1 + z)] +
5
2

log10 |F̃ F̃ww | −
5
2

log10 L + const.
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Relating magnitude and redshift

Procedure

Consider fixed observation time to.
Express emission time te and distance by redshift z.
Determine magnitude depending on redshift.

Taylor expansion around observation time

W̊ (t) = W̊ (to) +
dW̊
dt

∣∣∣∣∣
to

(t − to) +
1
2

d2W̊
dt2

∣∣∣∣∣
to

(t − to)2 +
1
6

d3W̊
dt3

∣∣∣∣∣
to

(t − to)3 + . . .

Magnitude-redshift relation

m(z) = 5 log10 z +
5

2 ln 10

(
3− W̊0W̊2

W̊ 2
1

)
z − 5

2
log10 L + const. +O(z2) .

⇒ Relates observational data to the zeros of the geometry function.
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Comparison with metric FLRW spacetime

Geometry
Derive metric Finsler function from gµν .
Cosmology: FLRW metric g = −dt ⊗ dt + a2(t)γij [κ]dx i ⊗ dx j .
Finsler function:

F =
√
|gµνyµyν | =

√∣∣y2 − a2(t)w2
∣∣

Null curve solution: W̊ (t) = 1/a(t).

Hubble and deceleration parameters
Series expansion of a(t) around observation time to

a(t) = a0

[
1 + H0(t − to)− 1

2
q0H2

0 (t − to)2
]

+O((t − to)3) .

⇒ Coefficient in magnitude-redshift relation:

3− W̊0W̊2

W̊ 2
1

= 1− q0 .
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Summary

Finsler spacetimes:
Based on Finsler length function.
Make use of tensors on the tangent bundle.
Generalize standard notions of causality, observers and gravity.

Cosmologically symmetric Finsler spacetimes:
Geometry defined by function F̃ (t ,w/y).
Simple form of geodesic equation (first order ODE).
Light propagation from F̃ (t , W̊ (t)) = 0 for all t .

Magnitude-redshift relation:
Expressed through Taylor coefficients of W̊ (t).
Allows probing of spacetime geometry via light propagation.
FLRW metric geometry: standard result for deceleration parameter.
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Outlook and references

Outlook:
Construct source term for gravitational field equations for fluids.
Solve cosmologically symmetric Finsler field equations.
Calculate further cosmological parameters (inflation, CMB?).
Derive constraints from cosmological observations.
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