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@ Modify spacetime geometry to address open problems:
o Origin of dark matter and dark energy.
@ Homogeneity of the cosmic microwave background and inflation.
o Fly-by anomaly in the solar system.
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@ Modify spacetime geometry to address open problems:
o Origin of dark matter and dark energy.
@ Homogeneity of the cosmic microwave background and inflation.
o Fly-by anomaly in the solar system.
@ Choose geometry which keeps well-known notions:
Divide tangent spaces into space-, time-, lightlike vectors.
Provide notions of future and past.
Distinguish curves corresponding to physical trajectories.
Define proper time along physical trajectories.
Determine trajectories of freely falling test masses.
Geometry is determined by matter distribution.
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@ Origin of dark matter and dark energy.
@ Homogeneity of the cosmic microwave background and inflation.
o Fly-by anomaly in the solar system.
@ Choose geometry which keeps well-known notions:
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@ Modify spacetime geometry to address open problems:
o Origin of dark matter and dark energy.
@ Homogeneity of the cosmic microwave background and inflation.
o Fly-by anomaly in the solar system.
@ Choose geometry which keeps well-known notions:
e Divide tangent spaces into space-, time-, lightlike vectors. v/
e Provide notions of future and past. v/
e Distinguish curves corresponding to physical trajectories. v/
e Define proper time along physical trajectories. v/
e Determine trajectories of freely falling test masses. v/
o Geometry is determined by matter distribution. v/
@ Finsler spacetime geometry provides all these notions:
Finsler length functional measures length of curves.
Finsler metric has Lorentz signature.
Orientability allows to distinguish future and past.
Previously mentioned notions define future timelike curves.
Finsler geodesics determine notion of free fall.
Gravity theory on Finsler spacetimes exists.
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Finsler geometry

@ Clock postulate on metric spacetime: proper time is arc length

b
shl = | \/=gu GOy 0.
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Finsler geometry

@ Clock postulate on metric spacetime: proper time is arc length

b
sl = | \/=gu GOy 0.

@ Generalized clock postulate on Finsler spacetimes:
e General length functional:

b
sly] = /t Fl(t).4(D)at

e Finsler function F : TM — R™.
e Parametrization invariance requires homogeneity:

F(x,Ay) = AF(x,y) VA>D0.
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Finsler geometry

@ Clock postulate on metric spacetime: proper time is arc length

b
shl = | \/=gu GOy 0.

@ Generalized clock postulate on Finsler spacetimes:
e General length functional:

b
syl = / F(y(t),~(t))dt .

t

e Finsler function F : TM — R*.
e Parametrization invariance requires homogeneity:

F(x,Ay) = AF(x,y) VA>D0.

@ F is not differentiable on null structure = use L = F/ instead.
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Cosmological symmetry

@ Generating vector fields on M:

@ Three translations 7, 7, 73.
e Three rotations p1, p2, p3-
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Cosmological symmetry

@ Generating vector fields on M:
e Three translations 7, 7, 73.
e Three rotations p1, p2, p3-
@ Cosmological coordinates on TM:

e Spherical coordinates t, r, ¢, o on M.
e Coordinates y, u, v, w on each T,M:

YO+ w |[cosu\/ 1 — kréo, + — <cos vOy + In;%)} e TyM.
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Cosmological symmetry

@ Generating vector fields on M:
e Three translations 7, 7, 73.
e Three rotations p1, p2, p3-
@ Cosmological coordinates on TM:

e Spherical coordinates t, r, ¢, on M.
e Coordinates y, u, v, w on each T,M:

yOr+ w [cosu\/ 1 — kréd, + su%u <cos vOy + z;:;%ﬂ e TyM.

@ Cosmologically symmetric Finsler spacetime:
Symmetry under rotations and translations.

Most general geometry function: L(t,y, w).
Homogeneity condition: L(t, \y, Aw) = AL(t, y, w).

]
]
o
e Express Finsler function as L(t,y, w) = y"L(t, w/y).
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Constants of motion

@ Construction of constants of motion:
o L itself is always constant along any geodesic.
e Symmetry generating vector field on M yields constant of motion:
@ Translations 7; = linear momenta I1;.
@ Rotations p; = angular momenta A;.
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Constants of motion

@ Construction of constants of motion:
o L itself is always constant along any geodesic.
e Symmetry generating vector field on M yields constant of motion:
@ Translations 7; = linear momenta I;.
@ Rotations p; = angular momenta A;.
@ Constants of motion in cosmological symmetry:
. N2
Co=L=y, C?= K—S = sin® vsin®0,

/_\’2

02 — [i2 1 kA2 = 2h7212’ C2 — _ _
1 y w 2 7ﬂ2—|-k/\2

=r?sin®u,
M
C; = —arctan = ¢ + arctan(tan vcosf),
2
Cs = —> = sinucos vsin6v/1 — kr2 — cos ucosé,

=sinucosfv/1 — kr2 +cosucosvsing.
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Geodesic motion

@ Tangent 4(\) of curve () in cosmological coordinates:

. . wsinusinv

=Y YT Trsing
: . wsinucosv
r=wv1—krcosu, e:f.
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Geodesic motion

@ Tangent 4(\) of curve () in cosmological coordinates:

- . wsinusinv

=Y YT Trsing
. . wsinucosv
r=wv1—krcosu, Ozf.

@ Use constants of motion to determine remaining equations:
0= Co=y"2|yLi+ hyLy — (wi — yi)Lu|
0= Ci =y"2 |y*Low+ (h—=1)yLuy — (W) = yi) L] .

0=0C, = (Wsmu 1 —kr2+ru) cosu,

0

Il
9.
Il

<wsin usinvcosé
r

—sin@f/) cos V.
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Geodesic motion

@ Tangent 4(\) of curve () in cosmological coordinates:

- . wsinusinv

=Y YT Trsing
. . wsinucosv
r=wv1—krcosu, Ozf.

@ Use constants of motion to determine remaining equations:
0=Co=y"2[y°Li+ hyLy — (wy — yw)La| ,
0= Cr = y" YL + (= )yLuy — (W) — yW)Luw] .

0=0C, = (Wsinu 1—kr2+ru) cosu,

. wsinusinvcosé
0 6, (s

—sin0\'/> cos V.

= Geodesics as integral curves of vector field S on TM.
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Radial geodesics

@ Purely radial motion:

:>y:i" u=0, v=0, w1 —krd=r.
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Radial geodesics

@ Purely radial motion:

=y=t, u=0, v=0, wV1—k?2=r.

@ Co-moving velocity:
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Radial geodesics

@ Purely radial motion:

=y=t, u=0, v=0, wvV1—k?2=r.

@ Co-moving velocity:

GGV 3
a t vy
@ Lightlike radial geodesics:
e Make use of Cy = L = y"[ = 0 along null geodesics.
o Solve 0 = L(t,w/y) witht=y > 0forall t € R.
= Solution w/y = W(t) satisfies L(t, W(t)) = 0.
o Integrate to obtain solution for geodesic:

ar o fo ar b,
7:Wt1_w:/44475/Wtw
& Vi [ L= [T
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Redshift of a light signal

@ Propagation of two wave packets:
@ Source and observer and fixed co-moving coordinates r, and r,.
e Wave packets emitted at times t 1 and t; » from re.
o Wave packets observed at times ¢, 1 and t, » at ro.
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Redshift of a light signal

@ Propagation of two wave packets:
@ Source and observer and fixed co-moving coordinates r, and r,.
e Wave packets emitted at times t 1 and t; » from re.
o Wave packets observed at times ¢, 1 and t, » at ro.

@ Both packets travel identical coordinate distances:

to,2 ° zL0,1 ° ° °
0= W(t)dt — W(t)dt ~ W(to)At, — W(ts)Ate.

te,2 te,1
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Redshift of a light signal

@ Propagation of two wave packets:
@ Source and observer and fixed co-moving coordinates r, and r,.
o Wave packets emitted at times t 1 and ¢ » from re.
o Wave packets observed at times t, 1 and &, » at r,.

@ Both packets travel identical coordinate distances:

lo2 o1 . R
0= W(t)dt W(t)dt =~ W(t,)At, — W(te)Ate.

te 2 te,1
@ Relation of observer’s proper time 7 and coordinate time t:
dT -
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Redshift of a light signal

@ Propagation of two wave packets:
@ Source and observer and fixed co-moving coordinates r, and r,.
o Wave packets emitted at times t 1 and ¢ » from re.
o Wave packets observed at times t, 1 and &, » at r,.

@ Both packets travel identical coordinate distances:

to’2 ° t0,1 o ° o
0= [ “Wydt— [ W(t)at ~ W(to)At, — W(te)Ats.

le,2 le,1
@ Relation of observer’s proper time 7 and coordinate time t:
ar
=
@ Compare proper time period of emitted and observed signals:

Aro _ <|Z(to)]>;’ W(ts)  Wi(te)

14+ 2z= S S = — .
Ate |L(te)] W(t) Wi(b)
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Magnitude of a distant source

@ Ratio B3/ £ of received vs. emitted power:
o Rate of photons decreased by factor 1 + z.
e Energy of each photon decreased by factor 1 + z.
= Ratio /& =(1+2)2.
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Magnitude of a distant source

@ Ratio B/ £ of received vs. emitted power:
o Rate of photons decreased by factor 1 + z.
e Energy of each photon decreased by factor 1 + z.
= RatioB/€=(1+2)"2
@ Area of illuminated sphere:
o Radial part of Finsler metric for co-moving receiver:

PLE L (da ®df +sin?6 do d¢) .

e Surface area of illuminated sphere: A = 4rr?

Z%*‘ZWW’ :
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Magnitude of a distant source

@ Ratio B/ £ of received vs. emitted power:
o Rate of photons decreased by factor 1 + z.
e Energy of each photon decreased by factor 1 + z.
= RatioB/€=(1+2)"2
@ Area of illuminated sphere:
o Radial part of Finsler metric for co-moving receiver:

PLE L (da ®df +sin?6 do d¢) .

e Surface area of illuminated sphere: A = 4xr2 |[5~1 ZWW‘ )
@ Magnitude derived from radiation flux:
o Radiation flux & = %:
G = < .
4rr2(1 + z)2 LT‘LWW‘

e Magnitude m = —32 log,, & + const.:

m = 5l0g,[r(1 + 2)] + g logyo | L7~ ZWW‘ — g log,o £ + const.
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Relating magnitude and redshift

@ General procedure:
o Consider fixed observation time t,.
o Express emission time t, and distance by redshift z.
o Determine magnitude depending on redshift.
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Relating magnitude and redshift

@ General procedure:
o Consider fixed observation time t,.
o Express emission time t, and distance by redshift z.
o Determine magnitude depending on redshift.

@ Taylor expansion around observation time:

. _ AW -
k — dtk . ) Lk — dtk

t:tg
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Relating magnitude and redshift

@ General procedure:
o Consider fixed observation time t,.
o Express emission time t, and distance by redshift z.
o Determine magnitude depending on redshift.

@ Taylor expansion around observation time:
iy _ AW . dW,
k — dtk ) Lk — dtk
t:to
@ Magnitude-redshift relation:

t: to

WiW, WoW,
m(z):5|og10z+i 24 10 TTLOTLE 5
2In10 Wo W4 W42

+0(2%) - g logyq £ + const.
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Relating magnitude and redshift

@ General procedure:
o Consider fixed observation time t,.
o Express emission time t, and distance by redshift z.
o Determine magnitude depending on redshift.

@ Taylor expansion around observation time:

. dkW PPl
KTtk o THRT gk
t=to t=to
@ Magnitude-redshift relation:
m(z) =509 Z + = > (1-9)z
9102 g 9

+0O(Z?) - g logq £ + const.

WLOWLZ W 1.

@ Deceleration parameter q = W
ovvii
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Example: FLRW metric spacetime

@ Geometry function with h = 2:

L= gap(x)y3y? = — y? + a(t)?w?.

Manuel Hohmann (University of Tartu) Finsler cosmology - [1612.08187] DPG MP 12 - 16. March 2017 11/14



Example: FLRW metric spacetime

@ Geometry function with h = 2:
L= gap(X)y?y® = — y* + a(t)?w?.

@ Relevant functions:
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Example: FLRW metric spacetime

@ Geometry function with h = 2:
L= gap(X)yy® = — y? + a(t)*w?.
@ Relevant functions:

Liy=1, W(t)=Wy(t)= o

@ Conventional series expansion for scale factor:

a(t) = ap |1+ Ho(t —to) — %ngo(t - to)2] +0 ((t - to)S) :
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Example: FLRW metric spacetime

@ Geometry function with h = 2:
L= gap(X)y?y® = — y* + a(t)?w?.

@ Relevant functions:

Liy=1, W(t)=Wy(t)= agt)

@ Conventional series expansion for scale factor:
1
a(t)y=ap |1+ Ho(t —to) — Engo(t — to)Z] +0 ((t — to)3) :

@ Deceleration parameter: g = qo.
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Example: Bogoslovsky length measure

@ Geometry function with h = 4:

L= (gan(x)y?y®) (Ac(x)y®) = (—y? + a(t)?w?) bl(1)?.
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Example: Bogoslovsky length measure

@ Geometry function with h = 4:
L= (gan(x)y?y®) (Ac(x)y®) = (=¥ + a(t)?w?) b(t)?.

@ Relevant functions:
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Example: Bogoslovsky length measure

@ Geometry function with h = 4:
L= (gan(x)y?y®) (Ac(x)y®) = (=¥ + a(t)?w?) b(1)?.
@ Relevant functions:
. o 1 o 1
L(H)y=-bt)?, WH=—, W({t)=—r—ro—.
(0= =b(0?, W)= 5. W) = s
@ Series expansion for parameter functions:

a(t) = ao |1+ Ho(t ~ 1)~ 5HEa(t ~ 2] + O (£~ %)

b(t) = by + by (t — t,) + %bg(t — )2+ 0 ((t - to)3> .
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Example: Bogoslovsky length measure

@ Geometry function with h = 4:
L= (gan(x)y?y®) (Ac(x)y®) = (=¥ + a(t)?w?) b(t)?.
@ Relevant functions:
. o 1 o 1
L(H)y=-b1t)?, WHt=—, W({t)=—r—ro—.
(0= b0 W) = 5 W) = s
@ Series expansion for parameter functions:

a(t) = ao |1+ Ho(t ~ 1)~ 5 HEao(t — 2] + O (£~ %)

b(t) = by + by (t — t,) + %bg(t — )2+ 0 ((t - to)3> .

@ Deceleration parameter: g = g
(+25)
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Example: Randers length measure

@ Geometry function with h = 2:

(\/ Ga(X)y3y] + Aa(x)ya) 2

- (V) —y2+a(t>2w2+b(r>y2)2 .

L
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Example: Randers length measure

@ Geometry function with h = 2:

2
L= ( Ga(X)yay?] + Aa(x)ya)

- W |~ y? + altew?] +b<r>y2)2 .

@ Relevant functions:

1 — b(t)?

. /1 =b(1)?
Tan Wi(t)

L(t)y=(1+b(1))?, W(t)= IR G
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Example: Randers length measure

@ Geometry function with h = 2:

2
L= ( Ga(X)yay?] + Aa(x)ya)

= (Vi-ye+attpwe +b(t>y2)2 .

@ Relevant functions:

1= b(1)? A2
a0 0= A

@ Use same series expansion for parameter functions as before.

L(t)

(1+b6(1))2, W(b) =
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Example: Randers length measure

@ Geometry function with h = 2:

(\/ Gap(X)y3y0] + Aa(x)ya) 2

2
= <\/| —y2 +a(t)Pw?| + b(f)y2> :
@ Relevant functions:
oo s A/T=b(2 /T b(t)?
Lty = (1+b(1))?, W(t) = A Wi (t) = 2O b0

@ Use same series expansion for parameter functions as before.
@ Deceleration parameter in terms of series expansion:

Ho(1 +2qo)b1 + b2
H§

L

q9=0qo— + O(b?).
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Conclusion

@ Summary:
o Finsler spacetimes:
@ Based on 1-homogeneous Finsler length function F = L# on TM.
@ Make use of tensor fields on the tangent bundle TM.
@ Generalize standard notions of causality, observers and gravity.
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Conclusion

@ Summary:
o Finsler spacetimes:

@ Based on 1-homogeneous Finsler length function F = L# on TM.
@ Make use of tensor fields on the tangent bundle TM.
@ Generalize standard notions of causality, observers and gravity.
e Cosmologically symmetric Finsler spacetimes:
@ Geometry defined by function L(t, w/y).
@ Simple form of geodesic equation (first order ODE on TM).
e Light propagation from L(t, W(t)) = 0 for all t.
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Conclusion

@ Summary:
o Finsler spacetimes:

@ Based on 1-homogeneous Finsler length function F = L# on TM.
@ Make use of tensor fields on the tangent bundle TM.
@ Generalize standard notions of causality, observers and gravity.
e Cosmologically symmetric Finsler spacetimes:
@ Geometry defined by function L(t, w/y).
@ Simple form of geodesic equation (first order ODE on TM).
e Light propagation from L(t, W(t)) = 0 for all t.
e Magnitude-redshift relation:
e Expressed through Taylor coefficients of W(t) and W,(t).
Allows probing of spacetime geometry via light propagation.
FLRW metric geometry: known result for deceleration parameter q.
Other geometries: g < 0 also without acceleration a > 0.
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Conclusion

@ Summary:
o Finsler spacetimes:
@ Based on 1-homogeneous Finsler length function F = L# on TM.
@ Make use of tensor fields on the tangent bundle TM.
@ Generalize standard notions of causality, observers and gravity.
e Cosmologically symmetric Finsler spacetimes:
@ Geometry defined by function L(t, w/y).
@ Simple form of geodesic equation (first order ODE on TM).
e Light propagation from L(t, W(t)) = 0 for all t.
o Magnitude-redshift relation:
e Expressed through Taylor coefficients of W(t) and W, (t).
@ Allows probing of spacetime geometry via light propagation.
@ FLRW metric geometry: known result for deceleration parameter q.
@ Other geometries: g < 0 also without acceleration 2 > 0.
@ Outlook:
e Construct source term for gravitational field equations for fluids.
e Solve cosmologically symmetric Finsler field equations.
o Calculate further cosmological parameters (inflation, CMB?).
e Derive constraints from cosmological observations.
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