Projective bundle approach to Finsler geometry

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

20. August 2019 24th International Summer School on Global Analysis and Applications

Outline

Introduction

- Projective Finsler function
- Projective tensor fields
- Projective d-tensors
- 5 Projective non-linear connections

Conclusion

Outline

Introduction

- 2 Projective Finsler function
- 3 Projective tensor fields
- Projective d-tensors
- 5 Projective non-linear connections

Conclusion

- General relativity:
 - Describes gravitational interaction as geometric phenomenon.
 - Spacetime modeled by smooth manifold M.
 - Geometry described by pseudo-Riemannian metric g.
 - Dynamics defined by Einstein-Hilbert action:

$$S_{\mathsf{EH}}[g] = \int_M \sqrt{-\det g} R(g) \, d^4 x \, .$$

- General relativity:
 - Describes gravitational interaction as geometric phenomenon.
 - Spacetime modeled by smooth manifold M.
 - Geometry described by pseudo-Riemannian metric g.
 - Dynamics defined by Einstein-Hilbert action:

$$S_{\mathsf{EH}}[g] = \int_M \sqrt{-\det g} R(g) \, d^4x$$
 .

- Open questions raised by general relativity:
 - Origin of dark matter and dark energy?
 - Homogeneity of the cosmic microwave background inflation?
 - Quantum theory and unification with other forces?

4/

- General relativity:
 - Describes gravitational interaction as geometric phenomenon.
 - Spacetime modeled by smooth manifold M.
 - Geometry described by pseudo-Riemannian metric g.
 - Dynamics defined by Einstein-Hilbert action:

$$S_{\mathsf{EH}}[g] = \int_M \sqrt{-\det g} R(g) \, d^4x$$
 .

- Open questions raised by general relativity:
 - Origin of dark matter and dark energy?
 - Homogeneity of the cosmic microwave background inflation?
 - Quantum theory and unification with other forces?
- Consider more general gravity theories and geometries.

- General relativity:
 - Describes gravitational interaction as geometric phenomenon.
 - Spacetime modeled by smooth manifold M.
 - Geometry described by pseudo-Riemannian metric g.
 - Dynamics defined by Einstein-Hilbert action:

$$S_{\mathsf{EH}}[g] = \int_M \sqrt{-\det g} R(g) \, d^4 x \, .$$

- Open questions raised by general relativity:
 - Origin of dark matter and dark energy?
 - Homogeneity of the cosmic microwave background inflation?
 - Quantum theory and unification with other forces?
- Consider more general gravity theories and geometries.
- Why consider Finsler (spacetime) geometry?
 - · Generalization of (pseudo-)Riemannian geometry.
 - Yields suitable causal structure for matter field equations.
 - Defines observer clocks via length of their trajectories.
 - Describes point-particle dynamics by Finsler geodesics.

- General relativity:
 - Describes gravitational interaction as geometric phenomenon.
 - Spacetime modeled by smooth manifold M.
 - Geometry described by pseudo-Riemannian metric g.
 - Dynamics defined by Einstein-Hilbert action:

$$S_{\mathsf{EH}}[g] = \int_M \sqrt{-\det g} R(g) \, d^4x$$
 .

- Open questions raised by general relativity:
 - Origin of dark matter and dark energy?
 - Homogeneity of the cosmic microwave background inflation?
 - Quantum theory and unification with other forces?
- Consider more general gravity theories and geometries.
- Why consider Finsler (spacetime) geometry?
 - Generalization of (pseudo-)Riemannian geometry.
 - Yields suitable causal structure for matter field equations.
 - Defines observer clocks via length of their trajectories.
 - Describes point-particle dynamics by Finsler geodesics.
- Lagrangian formulation of Finsler gravity theories?

- Spacetime geometry defined by function $L: TM \to \mathbb{R}$:
 - Slit tangent bundle $TM = TM \setminus \{0_x \in T_xM, x \in M\}$.
 - Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.
 - Zeros of *L* related to null cones / causal structure.
 - Finsler function $F = |L|^{1/h}$ measures length.

- Spacetime geometry defined by function $L: TM \to \mathbb{R}$:
 - Slit tangent bundle $TM = TM \setminus \{0_x \in T_xM, x \in M\}$.
 - Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.
 - Zeros of L related to null cones / causal structure.
 - Finsler function $F = |L|^{1/h}$ measures length.
- Determine L dynamically from Finsler gravity action?

- Spacetime geometry defined by function $L: TM \to \mathbb{R}$:
 - Slit tangent bundle $TM = TM \setminus \{0_x \in T_xM, x \in M\}$.
 - Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.
 - Zeros of *L* related to null cones / causal structure.
 - Finsler function $F = |L|^{1/h}$ measures length.
- Determine L dynamically from Finsler gravity action?
- Naive approach via *p*-th order Lagrangian $\Lambda \in \Omega^{2n}(J^p(\check{T}M,\mathbb{R}))$:

$$S[L] = \int_{TM}^{\circ} (j^p L)^* \Lambda$$
.

- Spacetime geometry defined by function $L: TM \to \mathbb{R}$:
 - Slit tangent bundle $\tilde{T}M = TM \setminus \{0_x \in T_xM, x \in M\}.$
 - Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.
 - Zeros of *L* related to null cones / causal structure.
 - Finsler function $F = |L|^{1/h}$ measures length.
- Determine *L* dynamically from Finsler gravity action?
- Naive approach via *p*-th order Lagrangian $\Lambda \in \Omega^{2n}(J^p(\check{T}M,\mathbb{R}))$:

$$\mathcal{S}[L] = \int_{TM}^{\circ} (j^{\rho}L)^* \Lambda$$
.

• Problems:

- Variations δL must preserve homogeneity of degree *h* of *L*.
- Domain of δL is composed of rays $[v] = \{\lambda v, \lambda \in \mathbb{R}^+\}$ for $v \in TM$.
- \Rightarrow No variations with compact support.

• Consider 0-homogeneous objects: Hilbert form, Finsler metric...

- Consider 0-homogeneous objects: Hilbert form, Finsler metric...
- \Rightarrow Pullback along section $\sigma: PM \rightarrow \tilde{T}M$ is independent of σ .

- Consider 0-homogeneous objects: Hilbert form, Finsler metric...
- \Rightarrow Pullback along section $\sigma: PM \rightarrow \check{T}M$ is independent of σ .
- \Rightarrow Possible to consider integration on compact subsets of *PM*.

- Consider 0-homogeneous objects: Hilbert form, Finsler metric...
- \Rightarrow Pullback along section $\sigma: PM \rightarrow \tilde{T}M$ is independent of σ .
- \Rightarrow Possible to consider integration on compact subsets of *PM*.
- Problems:
 - Higher order tensor fields instead of scalar Finsler function.
 - Variation must be constrained for tensor fields to remain Finslerian.

Introduction

- 2 Projective Finsler function
- 3 Projective tensor fields
- Projective d-tensors
- 5 Projective non-linear connections

Conclusion

Positive projective tangent bundle

.

• Slit tangent bundle $\overset{\circ}{T}M$ carries right action of \mathbb{R}^+ :

:
$$\overset{\circ}{T}M \times \mathbb{R}^+ \rightarrow \overset{\circ}{T}M$$

 $(\mathbf{v}, \lambda) \mapsto \mathbf{v} \cdot \lambda = \lambda \mathbf{v}$

.

Positive projective tangent bundle

• Slit tangent bundle $\tilde{T}M$ carries right action of \mathbb{R}^+ :

$$: \stackrel{\circ}{T}M \times \mathbb{R}^+ \to \stackrel{\circ}{T}M \\ (v, \lambda) \mapsto v \cdot \lambda = \lambda v$$

• Consider positive projective tangent bundle PM:

$$PM = \{ [v], v \in \overset{\circ}{T}M \}, \quad [v] = \{ \lambda v, \lambda \in \mathbb{R}^+ \} \subset \overset{\circ}{T}M.$$

Positive projective tangent bundle

• Slit tangent bundle $\check{T}M$ carries right action of \mathbb{R}^+ :

$$: \stackrel{\circ}{T}M \times \mathbb{R}^+ \rightarrow \stackrel{\circ}{T}M \\ (\mathbf{v}, \lambda) \mapsto \mathbf{v} \cdot \lambda = \lambda \mathbf{v}$$

• Consider positive projective tangent bundle PM:

$$PM = \{ [v], v \in \overset{\circ}{T}M \}, \quad [v] = \{ \lambda v, \lambda \in \mathbb{R}^+ \} \subset \overset{\circ}{T}M.$$

 \Rightarrow Construction defines a principal \mathbb{R}^+ -bundle with right action \cdot :

$$\begin{array}{rcl} \vartheta & : & \overset{\circ}{T}M & \to & PM \\ & v & \mapsto & \vartheta(v) = [v] \end{array}$$

Homogeneous functions on $\mathring{T}M$

• Consider Finsler Lagrange function $L: \overset{\circ}{T}M \to \mathbb{R}$.

- Consider Finsler Lagrange function $L: \check{T}M \to \mathbb{R}$.
- Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.

- Consider Finsler Lagrange function $L: \check{T}M \to \mathbb{R}$.
- Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.
- Consider left action of \mathbb{R}^+ on \mathbb{R} :

- Consider Finsler Lagrange function $L: \check{T}M \to \mathbb{R}$.
- Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.
- Consider left action of \mathbb{R}^+ on \mathbb{R} :

$$arrho_h : \mathbb{R}^+ imes \mathbb{R} o \mathbb{R} \ (\lambda, z) o arrho_h(\lambda, z) = \lambda^{-h} z$$

• Homogeneity of *L* is equivariance with respect to group actions:

$$L(\mathbf{v}\cdot\lambda)=\varrho_h(\lambda^{-1},L(\mathbf{v})).$$

- Consider Finsler Lagrange function $L: \check{T}M \to \mathbb{R}$.
- Homogeneity of degree $h \ge 2$: $L(\lambda v) = \lambda^h L(v)$ for $\lambda \in \mathbb{R}^+$.
- Consider left action of \mathbb{R}^+ on \mathbb{R} :

$$arrho_h : \mathbb{R}^+ imes \mathbb{R} o \mathbb{R} \ (\lambda, z) o arrho_h(\lambda, z) = \lambda^{-h} z$$

Homogeneity of L is equivariance with respect to group actions:

$$L(\mathbf{v}\cdot\lambda)=\varrho_h(\lambda^{-1},L(\mathbf{v})).$$

• Finsler geometry models gauge theory of the group \mathbb{R}^+ .

Associated bundle construction

- Define associated bundle $(Y_h, PM, \pi_h, \mathbb{R})$:
 - Total space $Y_h = \overset{\circ}{T}M \times_{\varrho_h} \mathbb{R}$.
 - Base space PM.
 - Bundle map $\pi_h: Y_h \to PM$.
 - $\circ~$ Typical fiber $\mathbb R.$

Associated bundle construction

- Define associated bundle $(Y_h, PM, \pi_h, \mathbb{R})$:
 - Total space $Y_h = \overset{\circ}{T}M \times_{\varrho_h} \mathbb{R}$.
 - Base space PM.
 - Bundle map $\pi_h: Y_h \to PM$.
 - Typical fiber \mathbb{R} .
- Elements of the total space are equivalence classes:

$$[\mathbf{v},\mathbf{z}] = \{(\mathbf{v}\cdot\lambda,\varrho_h(\lambda^{-1},\mathbf{z})),\lambda\in\mathbb{R}^+\} = \{(\lambda\mathbf{v},\lambda^h\mathbf{z}),\lambda\in\mathbb{R}^+\}.$$

Associated bundle construction

- Define associated bundle (Y_h, PM, π_h, ℝ):
 - Total space $Y_h = \overset{\circ}{T}M \times_{\varrho_h} \mathbb{R}$.
 - Base space PM.
 - Bundle map $\pi_h: Y_h \to PM$.
 - Typical fiber \mathbb{R} .
- Elements of the total space are equivalence classes:

$$[\mathbf{v}, \mathbf{z}] = \{ (\mathbf{v} \cdot \lambda, \varrho_h(\lambda^{-1}, \mathbf{z})), \lambda \in \mathbb{R}^+ \} = \{ (\lambda \mathbf{v}, \lambda^h \mathbf{z}), \lambda \in \mathbb{R}^+ \}.$$

Equivalence of equivariant maps and bundle sections

There exists a one-to-one correspondence between *h*-homogeneous functions $L : \overset{\circ}{T}M \to \mathbb{R}$ and sections $\hat{L} : PM \to Y_h$:

$$L(\mathbf{v}) = \mathbf{z} \quad \Leftrightarrow \quad \hat{L}([\mathbf{v}]) = [\mathbf{v}, \mathbf{z}].$$

• Consider $\hat{L}: PM \to Y_h$ as fundamental field variable.

Variational principle for projective Finsler function

- Consider $\hat{L}: PM \to Y_h$ as fundamental field variable.
- *p*-th order Lagrangian $\Lambda \in \Omega^{2n-1}(J^p \pi_h)$.

Variational principle for projective Finsler function

- Consider $\hat{L}: PM \to Y_h$ as fundamental field variable.
- *p*-th order Lagrangian $\Lambda \in \Omega^{2n-1}(J^p \pi_h)$.
- Action functional:

$$S[\hat{L}] = \int_{PM} (j^p \hat{L})^* \Lambda$$
.

- Consider $\hat{L}: PM \to Y_h$ as fundamental field variable.
- *p*-th order Lagrangian $\Lambda \in \Omega^{2n-1}(J^p \pi_h)$.
- Action functional:

$$S[\hat{L}] = \int_{PM} (j^p \hat{L})^* \Lambda$$
.

 \Rightarrow Possible to have variation $\delta \hat{L}$ with compact support $D \subset PM$.

- Consider $\hat{L}: PM \to Y_h$ as fundamental field variable.
- *p*-th order Lagrangian $\Lambda \in \Omega^{2n-1}(J^p \pi_h)$.
- Action functional:

$$S[\hat{L}] = \int_{PM} (j^p \hat{L})^* \Lambda$$
.

- ⇒ Possible to have variation $\delta \hat{L}$ with compact support $D \subset PM$.
 - Possible to construct Lagrangian also using projective approach?

Introduction

- 2 Projective Finsler function
- Projective tensor fields
- 4 Projective d-tensors
- 5 Projective non-linear connections

Conclusion

Homogeneous tensor fields on $\overset{\circ}{T}M$

• For $\lambda \in \mathbb{R}^+$, consider homothetic transformation:

$$\begin{array}{rccc} \varphi_{\lambda} & : & \overset{\circ}{T}M & \to & \overset{\circ}{T}M \\ & v & \mapsto & v \cdot \lambda = \lambda v \end{array}$$

.

Homogeneous tensor fields on $\mathring{T}M$

• For $\lambda \in \mathbb{R}^+$, consider homothetic transformation:

$$\begin{array}{rcl} \varphi_{\lambda} & : & \overset{\circ}{T}M & \to & \overset{\circ}{T}M \\ & v & \mapsto & v \cdot \lambda = \lambda v \end{array}$$

• Consider tensor bundle

$$T_s^r \overset{\circ}{T} M = (T \overset{\circ}{T} M)^{\otimes r} \otimes (T^* \overset{\circ}{T} M)^{\otimes s}$$

.

Homogeneous tensor fields on $\mathring{T}M$

• For $\lambda \in \mathbb{R}^+$, consider homothetic transformation:

$$\begin{array}{rccc} \varphi_{\lambda} & : & \overset{\circ}{T}\boldsymbol{M} & \to & \overset{\circ}{T}\boldsymbol{M} \\ \boldsymbol{v} & \mapsto & \boldsymbol{v} \cdot \lambda = \lambda \boldsymbol{v} \end{array}$$

Consider tensor bundle

$$T_s^r \overset{\circ}{T} M = (T \overset{\circ}{T} M)^{\otimes r} \otimes (T^* \overset{\circ}{T} M)^{\otimes s}$$

• *h*-homogeneous tensor field $Q: \overset{\circ}{T}M \to T_s^r \overset{\circ}{T}M$: for all $\lambda \in \mathbb{R}^+$

$$(\Phi_{\lambda}^{r,s})^{-1} \circ \mathcal{Q} \circ \varphi_{\lambda} = \varphi_{\lambda}^* \mathcal{Q} = \lambda^h \mathcal{Q}.$$

Homogeneous tensor fields on $\mathring{T}M$

• For $\lambda \in \mathbb{R}^+$, consider homothetic transformation:

$$\begin{array}{rcl} \varphi_{\lambda} & : & \overset{\circ}{T}M & \to & \overset{\circ}{T}M \\ & v & \mapsto & v \cdot \lambda = \lambda v \end{array}$$

Consider tensor bundle

$$T_s^r \overset{\circ}{T} M = (T \overset{\circ}{T} M)^{\otimes r} \otimes (T^* \overset{\circ}{T} M)^{\otimes s}$$

• *h*-homogeneous tensor field $Q: \overset{\circ}{T}M \to T_s^r \overset{\circ}{T}M$: for all $\lambda \in \mathbb{R}^+$

$$(\Phi_{\lambda}^{r,s})^{-1} \circ Q \circ \varphi_{\lambda} = \varphi_{\lambda}^{*}Q = \lambda^{h}Q.$$

• Relation to Liouville vector field $\mathbf{c} : \overset{\circ}{T}M \to T\overset{\circ}{T}M$:

$$\mathcal{L}_{\mathbf{c}}Q = hQ$$
.

• (Left) group action $\rho_h : \mathbb{R}^+ \times T_s^r \overset{\circ}{T} M \to T_s^r \overset{\circ}{T} M$ such that

$$\varphi_{\lambda}^{*} Q = \lambda^{h} Q \Leftrightarrow \rho_{h}(\lambda^{-1}, Q(\nu)) = Q(\nu \cdot \lambda) = \Phi_{\lambda}^{r,s}(\lambda^{h} Q(\nu)).$$

• (Left) group action $\rho_h : \mathbb{R}^+ \times T_s^r \overset{\circ}{T} M \to T_s^r \overset{\circ}{T} M$ such that

$$\varphi_{\lambda}^{*} Q = \lambda^{h} Q \Leftrightarrow \rho_{h}(\lambda^{-1}, Q(\mathbf{v})) = Q(\mathbf{v} \cdot \lambda) = \Phi_{\lambda}^{r,s}(\lambda^{h} Q(\mathbf{v})).$$

 \Rightarrow Explicit form of the action:

$$\begin{array}{rcl} \rho_h & : & \mathbb{R}^+ \times T^r_s \overset{\circ}{T}M & \to & T^r_s \overset{\circ}{T}M \\ & & (\lambda, q) & \mapsto & \lambda^{-h}(\Phi^{r,s}_\lambda)^{-1}(q) \end{array}$$

.

• (Left) group action $\rho_h : \mathbb{R}^+ \times T_s^r \overset{\circ}{T} M \to T_s^r \overset{\circ}{T} M$ such that

$$\varphi_{\lambda}^{*} Q = \lambda^{h} Q \Leftrightarrow \rho_{h}(\lambda^{-1}, Q(\mathbf{v})) = Q(\mathbf{v} \cdot \lambda) = \Phi_{\lambda}^{r,s}(\lambda^{h} Q(\mathbf{v})).$$

 \Rightarrow Explicit form of the action:

$$\begin{array}{rcl} \rho_h & : & \mathbb{R}^+ \times T^r_s \overset{\circ}{T}M & \to & T^r_s \overset{\circ}{T}M \\ & & (\lambda, q) & \mapsto & \lambda^{-h}(\Phi^{r,s}_\lambda)^{-1}(q) \end{array}$$

• Consider orbit space $Y_h^{r,s} := T_s^r \overset{\circ}{T} M / \rho_h$.

• (Left) group action $\rho_h : \mathbb{R}^+ \times T_s^r \overset{\circ}{T} M \to T_s^r \overset{\circ}{T} M$ such that

$$\varphi_{\lambda}^{*} Q = \lambda^{h} Q \Leftrightarrow \rho_{h}(\lambda^{-1}, Q(\mathbf{v})) = Q(\mathbf{v} \cdot \lambda) = \Phi_{\lambda}^{r,s}(\lambda^{h} Q(\mathbf{v})).$$

 \Rightarrow Explicit form of the action:

$$\begin{array}{rcl} \rho_h & : & \mathbb{R}^+ \times T^r_s \overset{\circ}{T}M & \to & T^r_s \overset{\circ}{T}M \\ & & (\lambda, q) & \mapsto & \lambda^{-h}(\Phi^{r,s}_\lambda)^{-1}(q) \end{array}$$

- Consider orbit space $Y_h^{r,s} := T_s^r \overset{\circ}{T} M / \rho_h$.
- $(Y_h^{r,s}, PM, \pi_h^{r,s}, \mathbb{R}^{(2n)^{r+s}})$ is a fiber bundle.

• (Left) group action $\rho_h : \mathbb{R}^+ \times T_s^r \overset{\circ}{T} M \to T_s^r \overset{\circ}{T} M$ such that

$$\varphi_{\lambda}^{*} Q = \lambda^{h} Q \Leftrightarrow \rho_{h}(\lambda^{-1}, Q(\mathbf{v})) = Q(\mathbf{v} \cdot \lambda) = \Phi_{\lambda}^{r,s}(\lambda^{h} Q(\mathbf{v})).$$

 \Rightarrow Explicit form of the action:

$$\begin{array}{rcl} \rho_h & : & \mathbb{R}^+ \times T^r_s \overset{\circ}{T}M & \to & T^r_s \overset{\circ}{T}M \\ & & (\lambda, q) & \mapsto & \lambda^{-h}(\Phi^{r,s}_\lambda)^{-1}(q) \end{array}$$

- Consider orbit space $Y_h^{r,s} := T_s^r \overset{\circ}{T} M / \rho_h$.
- $(Y_h^{r,s}, PM, \pi_h^{r,s}, \mathbb{R}^{(2n)^{r+s}})$ is a fiber bundle.
- $\Rightarrow (Y_h, PM, \pi_h, \mathbb{R}) \cong (Y_h^{0,0}, PM, \pi_h^{0,0}, \mathbb{R}^{(2n)^0}).$

Outline

Introduction

- Projective Finsler function
- Projective tensor fields
- Projective d-tensors
- 5 Projective non-linear connections

Conclusion

Pullback bundle vs. fibered product

- Definition of a pullback bundle:
 - Smooth manifolds *M*, *N*.
 - Fiber bundle $\pi: E \to M$.
 - Smooth map $\phi : N \to M$.
 - Pullback bundle $\phi^*\pi: \phi^*E \to N$, where
 - total space: φ^{*}E = {(p, e) ∈ N × E, φ(p) = π(e)},
 - projection: $\phi^*\pi(p, e) = p$.
 - Isomorphisms between fibers $F \cong (\phi^* E)_{\rho} \cong E_{\phi(\rho)}$.
 - Fiber bundle structure of *E* induces fiber bundle structure on ϕ^*E :

where U trivializes E around $\phi(p)$ and $\tilde{\psi}(p, e) = (p, pr_2(\psi(e)))$.

Pullback bundle vs. fibered product

- Definition of a pullback bundle:
 - Smooth manifolds *M*, *N*.
 - Fiber bundle $\pi: E \to M$.
 - Smooth map $\phi : N \to M$.
 - Pullback bundle $\phi^*\pi: \phi^*E \to N$, where
 - total space: φ^{*}E = {(p, e) ∈ N × E, φ(p) = π(e)},
 - projection: $\phi^*\pi(p, e) = p$.
 - Isomorphisms between fibers $F \cong (\phi^* E)_{\rho} \cong E_{\phi(\rho)}$.
 - Fiber bundle structure of *E* induces fiber bundle structure on ϕ^*E :

where U trivializes E around $\phi(p)$ and $\tilde{\psi}(p, e) = (p, pr_2(\psi(e)))$. • For N = E and $\phi = \pi$: $\phi^* E = E \times_M E$.

D-tensors

- Definition of d-tensors:
 - (Slit) tangent bundle: $\overset{(\circ)}{\tau}: \overset{(\circ)}{T}M \to M$.
 - Pullback bundle: $\varpi = \overset{\circ}{\tau} {}^{*}\tau : \overset{\circ}{T}M \times_{M} TM \rightarrow \overset{\circ}{T}M.$
 - Tensor bundles: $\mathcal{T}_{s}^{r}(\varpi) \cong (\check{T}M \times_{M} TM)^{\otimes r} \otimes (\check{T}M \times_{M} T^{*}M)^{\otimes s}$.
 - (r, s)-d-tensor field: section of $\mathcal{T}_s^r(\varpi)$.

D-tensors

- Definition of d-tensors:
 - (Slit) tangent bundle: $\overset{(\circ)}{\tau}: \overset{(\circ)}{T}M \to M$.
 - Pullback bundle: $\varpi = \overset{\circ}{\tau}^* \tau : \overset{\circ}{T} M \times_M TM \to \overset{\circ}{T} M.$
 - Tensor bundles: $\mathcal{T}_{s}^{r}(\varpi) \cong (\check{T}M \times_{M} TM)^{\otimes r} \otimes (\check{T}M \times_{M} T^{*}M)^{\otimes s}$.
 - (r, s)-d-tensor field: section of $\mathcal{T}_s^r(\varpi)$.
- Relation to the double tangent bundle $\psi : TTM \rightarrow TM$:

• Canonical injective strong bundle map:

$$\begin{array}{rccc} \mathbf{i} & : & \overset{\circ}{T}M \times_{M} TM & \to & T \overset{\circ}{T}M \\ & & (v,w) & \mapsto & \frac{d}{dt}(v+tw)\big|_{t=0} \end{array}$$

Canonical surjective strong bundle map:

$$\mathbf{j} : T \overset{\circ}{T} M \rightarrow \overset{\circ}{T} M \times_M T M \\ \xi \mapsto (\psi(\xi), \overset{\circ}{\tau}_*(\xi))$$

$$0 \to \overset{\circ}{T}M \times_M TM \xrightarrow{i} T\overset{\circ}{T}M \xrightarrow{j} \overset{\circ}{T}M \times_M TM \to 0$$

$$0 \to \overset{\circ}{T}M \times_M TM \xrightarrow{i} T\overset{\circ}{T}M \xrightarrow{j} \overset{\circ}{T}M \times_M TM \to 0$$

• Dual exact sequence:

$$0 \leftarrow \overset{\circ}{T}M \times_M T^*M \stackrel{i^*}{\leftarrow} T^*\overset{\circ}{T}M \stackrel{j^*}{\leftarrow} \overset{\circ}{T}M \times_M T^*M \leftarrow 0$$

$$0 \to \overset{\circ}{T}M \times_M TM \xrightarrow{i} T\overset{\circ}{T}M \xrightarrow{j} \overset{\circ}{T}M \times_M TM \to 0$$

Dual exact sequence:

$$0 \leftarrow \overset{\circ}{T}M \times_M T^*M \xleftarrow{i^*}{T}T^*\overset{\circ}{T}M \xleftarrow{j^*}{T}M \times_M T^*M \leftarrow 0$$

• Use maps i and j* to map d-tensors to $T_s^r \mathring{T} M$.

$$0 \to \overset{\circ}{T}M \times_M TM \xrightarrow{i} T\overset{\circ}{T}M \xrightarrow{j} \overset{\circ}{T}M \times_M TM \to 0$$

Dual exact sequence:

$$0 \leftarrow \overset{\circ}{T}M \times_M T^*M \xleftarrow{i^*}{T}T^*\overset{\circ}{T}M \xleftarrow{j^*}{T}M \times_M T^*M \leftarrow 0$$

- Use maps i and j* to map d-tensors to $T_s' \check{T} M$.
- Define homogeneity via the image tensor fields $\in \Gamma(T_s^r \tilde{T}M)$.

$$0 \to \overset{\circ}{T}M \times_M TM \xrightarrow{i} T\overset{\circ}{T}M \xrightarrow{j} \overset{\circ}{T}M \times_M TM \to 0$$

Dual exact sequence:

$$0 \leftarrow \overset{\circ}{T}M \times_M T^*M \stackrel{i^*}{\leftarrow} T^* \overset{\circ}{T}M \stackrel{j^*}{\leftarrow} \overset{\circ}{T}M \times_M T^*M \leftarrow 0$$

- Use maps **i** and **j**^{*} to map d-tensors to $T_s' \check{T} M$.
- Define homogeneity via the image tensor fields $\in \Gamma(T_s^r T M)$.
- ⇒ Apply construction for homogeneous tensor fields.

Outline

Introduction

- Projective Finsler function
- Projective tensor fields
- Projective d-tensors
- 5 Projective non-linear connections

6 Conclusion

$$0 \longrightarrow \overset{\circ}{T}M \times_{M} TM \xrightarrow{i}_{\mathcal{V}} T\overset{\circ}{T}M \xrightarrow{j}_{\mathcal{H}} \overset{\circ}{T}M \times_{M} TM \longrightarrow 0$$

$$0 \longrightarrow \overset{\circ}{T}M \times_{M} TM \underbrace{\overset{i}{\underset{\mathcal{V}}{\longrightarrow}}}_{\mathcal{V}} T\overset{\circ}{T}M \underbrace{\overset{j}{\underset{\mathcal{H}}{\longrightarrow}}}_{\mathcal{H}} \overset{\circ}{T}M \times_{M} TM \longrightarrow 0$$

• Horizontal map \mathcal{H} and vertical map \mathcal{V} .

$$0 \longrightarrow \overset{\circ}{T}M \times_{M} TM \underbrace{\overset{i}{\underset{\mathcal{V}}{\longrightarrow}}}_{\mathcal{V}} T\overset{\circ}{T}M \underbrace{\overset{j}{\underset{\mathcal{H}}{\longrightarrow}}}_{\mathcal{H}} \overset{\circ}{T}M \times_{M} TM \longrightarrow 0$$

- Horizontal map \mathcal{H} and vertical map \mathcal{V} .
- Define projection maps $\mathbf{h} = \mathcal{H} \circ \mathbf{j}$ and $\mathbf{v} = \mathbf{i} \circ \mathcal{V}$.

$$0 \longrightarrow \overset{\circ}{T}M \times_{M} TM \underbrace{\overset{i}{\underset{\mathcal{V}}{\longrightarrow}}}_{\mathcal{V}} T\overset{\circ}{T}M \underbrace{\overset{j}{\underset{\mathcal{H}}{\longrightarrow}}}_{\mathcal{H}} \overset{\circ}{T}M \times_{M} TM \longrightarrow 0$$

- Horizontal map \mathcal{H} and vertical map \mathcal{V} .
- Define projection maps $\mathbf{h} = \mathcal{H} \circ \mathbf{j}$ and $\mathbf{v} = \mathbf{i} \circ \mathcal{V}$.
- Bundle splitting $T \overset{\circ}{T} M = V \overset{\circ}{T} M \oplus H \overset{\circ}{T} M$:
 - $V \overset{\circ}{T} M = \operatorname{im} \mathbf{i} = \operatorname{im} \mathbf{v} = \ker \mathbf{j} = \ker \mathbf{h}$: canonically defined.
 - $HTM = im \mathbf{h} = im \mathcal{H} = ker \mathbf{v} = ker \mathcal{V}$: defined only by connection.

• Maps $\mathbf{v} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ and $\mathbf{h} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ are bundle maps.

• Maps $\mathbf{v} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ and $\mathbf{h} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ are bundle maps. \Rightarrow Interpretation as tensor fields: $\mathbf{v}, \mathbf{h} \in \Gamma(T \overset{\circ}{T} M \otimes T^* \overset{\circ}{T} M) = T_1^1 \overset{\circ}{T} M$.

- Maps $\mathbf{v} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ and $\mathbf{h} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ are bundle maps.
- ⇒ Interpretation as tensor fields: $\mathbf{v}, \mathbf{h} \in \Gamma(T\overset{\circ}{T}M \otimes T^*\overset{\circ}{T}M) = T_1^1\overset{\circ}{T}M$.
 - Homogeneous connection: v, h are homogeneous tensor fields.

- Maps $\mathbf{v} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ and $\mathbf{h} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ are bundle maps.
- ⇒ Interpretation as tensor fields: $\mathbf{v}, \mathbf{h} \in \Gamma(T \overset{\circ}{T} M \otimes T^* \overset{\circ}{T} M) = T_1^1 \overset{\circ}{T} M$.
- Homogeneous connection: v, h are homogeneous tensor fields.
- \Rightarrow Apply construction for homogeneous tensor fields.

- Maps $\mathbf{v} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ and $\mathbf{h} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ are bundle maps.
- Interpretation as tensor fields: $\mathbf{v}, \mathbf{h} \in \Gamma(T\overset{\circ}{T}M \otimes T^*\overset{\circ}{T}M) = T_1^1\overset{\circ}{T}M.$
- *Homogeneous* connection: **v**, **h** are homogeneous tensor fields.
- \Rightarrow Apply construction for homogeneous tensor fields.
 - Note that $\mathbf{v} + \mathbf{h} = \operatorname{id}_{\tau \tau M}$ is 0-homogeneous!

- Maps $\mathbf{v} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ and $\mathbf{h} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ are bundle maps.
- Interpretation as tensor fields: $\mathbf{v}, \mathbf{h} \in \Gamma(T \overset{\circ}{T} M \otimes T^* \overset{\circ}{T} M) = T_1^1 \overset{\circ}{T} M$.
- *Homogeneous* connection: **v**, **h** are homogeneous tensor fields.
- \Rightarrow Apply construction for homogeneous tensor fields.
 - Note that $\mathbf{v} + \mathbf{h} = \operatorname{id}_{\tau \tau M}$ is 0-homogeneous!
- \Rightarrow Tensor fields **v**, **h** are also 0-homogeneous.

- Maps $\mathbf{v} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ and $\mathbf{h} : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ are bundle maps.
- ⇒ Interpretation as tensor fields: $\mathbf{v}, \mathbf{h} \in \Gamma(T \mathring{T} M \otimes T^* \mathring{T} M) = T_1^1 \mathring{T} M$.
 - Homogeneous connection: **v**, **h** are homogeneous tensor fields.
- \Rightarrow Apply construction for homogeneous tensor fields.
 - Note that $\mathbf{v} + \mathbf{h} = \operatorname{id}_{\mathcal{TTM}}$ is 0-homogeneous!
- \Rightarrow Tensor fields **v**, **h** are also 0-homogeneous.
 - Compare with other structures:
 - Tangent structure $J : T \overset{\circ}{T} M \to T \overset{\circ}{T} M$ with im $J = \ker J = V \overset{\circ}{T} M$ is -1-homogeneous.
 - Adjoint structure Θ : $T \overset{\circ}{T} M \rightarrow T \overset{\circ}{T} M$ with im $J = \ker J = H \overset{\circ}{T} M$ is 1-homogeneous.

Outline

Introduction

- Projective Finsler function
- Projective tensor fields
- Projective d-tensors
- 5 Projective non-linear connections

Conclusion

- Summary:
 - Homogeneity = equivariance under group action of \mathbb{R}^+ .
 - Define orbit space $PM = \breve{T}M/\mathbb{R}^+$.
 - Homogeneous functions \leftrightarrow sections of $\pi_h : Y_h \rightarrow PM$.
 - Describe Finsler geometry in terms of section $\hat{L}: PM \to Y_h$.
 - \Rightarrow Well-defined domains for action integrals.
 - Possible generalization to tensors, d-tensors, connections.

Conclusion

- Summary:
 - Homogeneity = equivariance under group action of \mathbb{R}^+ .
 - Define orbit space $PM = \breve{T}M/\mathbb{R}^+$.
 - Homogeneous functions \leftrightarrow sections of $\pi_h : Y_h \rightarrow PM$.
 - Describe Finsler geometry in terms of section $\hat{L}: PM \to Y_h$.
 - \Rightarrow Well-defined domains for action integrals.
 - Possible generalization to tensors, d-tensors, connections.
- Outlook:
 - Express formulas in Finsler geometry by projective formalism.
 - Study structure of jet bundles $J^{p}\pi_{h}$.

- Summary:
 - Homogeneity = equivariance under group action of \mathbb{R}^+ .
 - Define orbit space $PM = \breve{T}M/\mathbb{R}^+$.
 - Homogeneous functions \leftrightarrow sections of $\pi_h : Y_h \rightarrow PM$.
 - Describe Finsler geometry in terms of section $\hat{L}: PM \to Y_h$.
 - \Rightarrow Well-defined domains for action integrals.
 - Possible generalization to tensors, d-tensors, connections.
- Outlook:
 - Express formulas in Finsler geometry by projective formalism.
 - Study structure of jet bundles $J^{p}\pi_{h}$.
- References:
 - M. Hohmann, C. Pfeifer and N. Voicu, "Finsler gravity action from variational completion", arXiv:1812.11161 [gr-qc] (to appear in Phys. Rev. D).