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Motivation

• General relativity:
◦ Describes gravitational interaction as geometric phenomenon.
◦ Spacetime modeled by smooth manifold M.
◦ Geometry described by pseudo-Riemannian metric g.
◦ Dynamics defined by Einstein-Hilbert action:

SEH[g] =

∫
M

√
− det gR(g) d4x .

• Open questions raised by general relativity:
◦ Origin of dark matter and dark energy?
◦ Homogeneity of the cosmic microwave background - inflation?
◦ Quantum theory and unification with other forces?

• Consider more general gravity theories and geometries.
• Why consider Finsler (spacetime) geometry?

◦ Generalization of (pseudo-)Riemannian geometry.
◦ Yields suitable causal structure for matter field equations.
◦ Defines observer clocks via length of their trajectories.
◦ Describes point-particle dynamics by Finsler geodesics.

• Lagrangian formulation of Finsler gravity theories?
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Length measure approach to Finsler geometry

• Spacetime geometry defined by function L :
◦
TM → R:

◦ Slit tangent bundle
◦
TM = TM \ {0x ∈ TxM, x ∈ M}.

◦ Homogeneity of degree h ≥ 2: L(λv) = λhL(v) for λ ∈ R+.
◦ Zeros of L related to null cones / causal structure.
◦ Finsler function F = |L|1/h measures length.

• Determine L dynamically from Finsler gravity action?

• Naive approach via p-th order Lagrangian Λ ∈ Ω2n(Jp(
◦
TM,R)):

S[L] =

∫
◦
TM

(jpL)∗Λ .

• Problems:
◦ Variations δL must preserve homogeneity of degree h of L.

◦ Domain of δL is composed of rays [v ] = {λv , λ ∈ R+} for v ∈
◦
TM.

⇒ No variations with compact support.
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0-homogeneous approach to Finsler geometry

• Consider 0-homogeneous objects: Hilbert form, Finsler metric. . .

⇒ Pullback along section σ : PM →
◦
TM is independent of σ.

⇒ Possible to consider integration on compact subsets of PM.
• Problems:

◦ Higher order tensor fields instead of scalar Finsler function.
◦ Variation must be constrained for tensor fields to remain Finslerian.
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Positive projective tangent bundle

• Slit tangent bundle
◦
TM carries right action of R+:

· :
◦
TM × R+ →

◦
TM

(v , λ) 7→ v · λ = λv
.

• Consider positive projective tangent bundle PM:

PM = {[v ], v ∈
◦
TM} , [v ] = {λv , λ ∈ R+} ⊂

◦
TM .

⇒ Construction defines a principal R+-bundle with right action ·:

ϑ :
◦
TM → PM

v 7→ ϑ(v) = [v ]
.
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Homogeneous functions on
◦
TM

• Consider Finsler Lagrange function L :
◦
TM → R.

• Homogeneity of degree h ≥ 2: L(λv) = λhL(v) for λ ∈ R+.
• Consider left action of R+ on R:

%h : R+ × R → R
(λ, z) 7→ %h(λ, z) = λ−hz

.

• Homogeneity of L is equivariance with respect to group actions:

L(v · λ) = %h(λ−1,L(v)) .

• Finsler geometry models gauge theory of the group R+.
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Associated bundle construction

• Define associated bundle (Yh,PM, πh,R):

◦ Total space Yh =
◦
TM ×%h R.

◦ Base space PM.
◦ Bundle map πh : Yh → PM.
◦ Typical fiber R.

• Elements of the total space are equivalence classes:

[v , z] = {(v · λ, %h(λ−1, z)), λ ∈ R+} = {(λv , λhz), λ ∈ R+} .

Equivalence of equivariant maps and bundle sections
There exists a one-to-one correspondence between h-homogeneous

functions L :
◦
TM → R and sections L̂ : PM → Yh:

L(v) = z ⇔ L̂([v ]) = [v , z] .
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Variational principle for projective Finsler function

• Consider L̂ : PM → Yh as fundamental field variable.

• p-th order Lagrangian Λ ∈ Ω2n−1(Jpπh).
• Action functional:

S[L̂] =

∫
PM

(jpL̂)∗Λ .

⇒ Possible to have variation δL̂ with compact support D ⊂ PM.
• Possible to construct Lagrangian also using projective approach?
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Homogeneous tensor fields on
◦
TM

• For λ ∈ R+, consider homothetic transformation:

ϕλ :
◦
TM →

◦
TM

v 7→ v · λ = λv
.

• Consider tensor bundle

T r
s

◦
TM = (T

◦
TM)⊗r ⊗ (T ∗

◦
TM)⊗s .

• h-homogeneous tensor field Q :
◦
T M → T r

s

◦
TM: for all λ ∈ R+

(Φr ,s
λ )−1 ◦Q ◦ ϕλ = ϕ∗λQ = λhQ .

• Relation to Liouville vector field c :
◦
TM → T

◦
T M:

LcQ = hQ .
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Homogeneity and equivariance

• (Left) group action ρh : R+ × T r
s

◦
TM → T r

s

◦
TM such that

ϕ∗λQ = λhQ ⇔ ρh(λ−1,Q(v)) = Q(v · λ) = Φr ,s
λ (λhQ(v)) .

⇒ Explicit form of the action:

ρh : R+ × T r
s

◦
TM → T r

s

◦
TM

(λ,q) 7→ λ−h(Φr ,s
λ )−1(q)

.

• Consider orbit space Y r ,s
h := T r

s

◦
TM/ρh.

• (Y r ,s
h ,PM, πr ,s

h ,R(2n)r+s
) is a fiber bundle.

⇒ (Yh,PM, πh,R) ∼= (Y 0,0
h ,PM, π0,0

h ,R(2n)0
).
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h := T r

s
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TM/ρh.

• (Y r ,s
h ,PM, πr ,s
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Pullback bundle vs. fibered product

• Definition of a pullback bundle:
◦ Smooth manifolds M,N.
◦ Fiber bundle π : E → M.
◦ Smooth map φ : N → M.
◦ Pullback bundle φ∗π : φ∗E → N, where

total space: φ∗E = {(p, e) ∈ N × E , φ(p) = π(e)},
projection: φ∗π(p, e) = p.

◦ Isomorphisms between fibers F ∼= (φ∗E)p ∼= Eφ(p).
◦ Fiber bundle structure of E induces fiber bundle structure on φ∗E :

π−1(U)
ψ //

π

��

U × F

pr1
yy

U

⇒ (φ∗π)−1(φ−1(U))
ψ̃ //

φ∗π

��

φ−1(U)× F

pr1

vvU

where U trivializes E around φ(p) and ψ̃(p,e) = (p, pr2(ψ(e))).

• For N = E and φ = π: φ∗E = E ×M E .
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D-tensors

• Definition of d-tensors:

◦ (Slit) tangent bundle:
(◦)
τ :

(◦)
TM → M.

◦ Pullback bundle: $ =
◦
τ∗τ :

◦
TM ×M TM →

◦
TM.

◦ Tensor bundles: T r
s ($) ∼= (

◦
TM ×M TM)⊗r ⊗ (

◦
TM ×M T ∗M)⊗s.

◦ (r , s)-d-tensor field: section of T r
s ($).

• Relation to the double tangent bundle ψ : T
◦
TM →

◦
TM:

◦ Canonical injective strong bundle map:

i :
◦
TM ×M TM → T

◦
TM

(v ,w) 7→ d
dt (v + tw)

∣∣
t=0

◦ Canonical surjective strong bundle map:

j : T
◦
TM →

◦
TM ×M TM

ξ 7→ (ψ(ξ),
◦
τ∗(ξ))
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Homogeneous d-tensors

• Maps form exact sequence:

0→
◦
T M ×M TM i−→ T

◦
TM

j−→
◦
TM ×M TM → 0

• Dual exact sequence:

0←
◦
TM ×M T ∗M i∗←− T ∗

◦
TM

j∗←−
◦
TM ×M T ∗M ← 0

• Use maps i and j∗ to map d-tensors to T r
s

◦
TM.

• Define homogeneity via the image tensor fields ∈ Γ(T r
s

◦
TM).

⇒ Apply construction for homogeneous tensor fields.
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Non-linear connections

• Non-linear connection: splitting of exact sequence

0 //
◦
T M ×M TM

i ,,
T
◦
TM

V
nn

j .. ◦
TM ×M TM

H
ll // 0

• Horizontal map H and vertical map V.
• Define projection maps h = H ◦ j and v = i ◦ V.

• Bundle splitting T
◦
TM = V

◦
TM ⊕ H

◦
TM:

◦ V
◦
TM = im i = im v = ker j = ker h: canonically defined.

◦ H
◦
TM = im h = imH = ker v = kerV: defined only by connection.
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Non-linear connections as tensor fields

• Maps v : T
◦
TM → T

◦
TM and h : T

◦
TM → T

◦
TM are bundle maps.

⇒ Interpretation as tensor fields: v,h ∈ Γ(T
◦
TM ⊗ T ∗

◦
TM) = T 1

1

◦
TM.

• Homogeneous connection: v,h are homogeneous tensor fields.
⇒ Apply construction for homogeneous tensor fields.
• Note that v + h = id

T
◦
TM

is 0-homogeneous!

⇒ Tensor fields v,h are also 0-homogeneous.
• Compare with other structures:

◦ Tangent structure J : T
◦
TM → T

◦
T M with im J = ker J = V

◦
TM is

-1-homogeneous.

◦ Adjoint structure Θ : T
◦
TM → T

◦
TM with im J = ker J = H

◦
T M is

1-homogeneous.
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Conclusion

• Summary:
◦ Homogeneity = equivariance under group action of R+.

◦ Define orbit space PM =
◦
TM/R+.

◦ Homogeneous functions↔ sections of πh : Yh → PM.
◦ Describe Finsler geometry in terms of section L̂ : PM → Yh.
⇒ Well-defined domains for action integrals.
◦ Possible generalization to tensors, d-tensors, connections.

• Outlook:
◦ Express formulas in Finsler geometry by projective formalism.
◦ Study structure of jet bundles Jpπh.

• References:
◦ M. Hohmann, C. Pfeifer and N. Voicu,

“Finsler gravity action from variational completion”,
arXiv:1812.11161 [gr-qc] (to appear in Phys. Rev. D).
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