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e Pseudo-Riemannian geometry of spacetime has multiple roles:
o Causality
o Observers, observables and observations
o Gravity
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e Geometry has implications for physical theories:
o Local Lorentz invariance
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e Theories of quantum gravity may break these conditions:
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= Possible stronger, non-tensorial dependence of physical quantities
on observer’s motion.
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e Pseudo-Riemannian geometry of spacetime has multiple roles:
o Causality
o Observers, observables and observations
o Gravity
e Geometry has implications for physical theories:
o Local Lorentz invariance
o General covariance
e Theories of quantum gravity may break these conditions:
o Loop quantum gravity
o Spin foam networks
o Causal dynamical triangulations
= Possible stronger, non-tensorial dependence of physical quantities
on observer’s motion.
= More general, non-tensorial, “observer dependent” geometries:
o Finsler spacetimes
o Cartan geometry on observer space

e How to serve the same roles as pseudo-Riemannian geometry?
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Why Finsler geometry of spacetimes?

e Finsler geometry of space widely used in physics:
o Approaches to quantum gravity
o Electrodynamics in anisotropic media
o Modeling of astronomical data
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Why Finsler geometry of spacetimes?

e Finsler geometry of space widely used in physics:
o Approaches to quantum gravity
o Electrodynamics in anisotropic media
o Modeling of astronomical data
e Finsler geometry generalizes Riemannian geometry:
o Clock postulate: proper time equals arc length along trajectories.
o Geometry described by Finsler metric.
o Well-defined notions of connections, curvature, parallel transport. ..
e Finsler spacetimes are suitable backgrounds for:
Gravity
Electrodynamics
Fluid dynamics / kinetic gases
Other matter field theories

o
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Why Finsler geometry of spacetimes?

e Finsler geometry of space widely used in physics:
o Approaches to quantum gravity
o Electrodynamics in anisotropic media
o Modeling of astronomical data
e Finsler geometry generalizes Riemannian geometry:
o Clock postulate: proper time equals arc length along trajectories.
o Geometry described by Finsler metric.
o Well-defined notions of connections, curvature, parallel transport. ..
e Finsler spacetimes are suitable backgrounds for:
o Gravity
Electrodynamics
o Fluid dynamics / kinetic gases
o Other matter field theories
? Possible explanations of yet unexplained phenomena:

? Galaxy rotation curves
? Accelerating expansion of the universe

o
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Why Cartan geometry on observer space?

e Quantum gravity suggests breaking of.. .

o ...local Lorentz invariance.
o ...general covariance.
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Why Cartan geometry on observer space?

e Quantum gravity suggests breaking of.. .
o ...local Lorentz invariance.
o ...general covariance.

e Possible breaking of symmetry through. ..

o ...preferred observers / timelike vector fields.
o ...preferred spatial foliations of spacetime.
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Why Cartan geometry on observer space?

e Quantum gravity suggests breaking of.. .
o ...local Lorentz invariance.
o ...general covariance.
e Possible breaking of symmetry through. ..
o ...preferred observers / timelike vector fields.
o ...preferred spatial foliations of spacetime.
e Problems:
o Breaking of Copernican principle for observers.
o No observation of (strongly) broken symmetry.
e Solution:

o Consider space O of all allowed observers.

o Describe experiments on observer space instead of spacetime.
= Observer dependence of physical quantities follows naturally.
= No preferred observers.

o Geometry of observer space modeled by Cartan geometry.
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Geometrical structures

Metric geometry

Finsler geometry Cartan geometry

Manifold M Tangent bundle TM Lie group
Lorentzian metric g | Geometry function G =1800(3,1)
Orientation L:TM - R Closed subgroup
Time orientation Finsler function K =3S0(3)
F:TM - R Principal K-bundle
Finsler metric g7 (x, y) m:P—0
Cartan non-linear Cartan connection
connection N2, AecQ'(P,g)
Cartan linear
connection V
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Geometrical structures

Metric geometry

Manifold M
Lorentzian metric g
Orientation

Time orientation

From metric to Finsler
Coordinates (x2) on M
Coordinates (x4, y2) on TM
Define L(X, y) = Gap(X)y3y®

Finsler geometry
Tangent bundle TM

Geometry function
L:TM - R

Finsler function
F:TM - R

Finsler metric g (x, y)
Cartan non-linear

connection N2, \

Cartan linear
connection V

From Finsfer to Cartan

Space O of observer 4-velocities
Space P of observer frames
Define A from connection V

Cartan geometry

Lie group

G =1S0¢(3,1)
Closed subgroup
K = SO(3)
Principal K-bundle
m:P— O

Cartan connection
Ac Q'(P,g)
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2. Geometries

2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry

2.3 Observer space Cartan geometry
2.4 Relation between geometries
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1. Introduction

2. Geometries
2.1 Pseudo-Riemannian geometry

3. Application in physics

4. Conclusion
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Pseudo-Riemannian spacetime geometry

¢ Ingredients of pseudo-Riemannian spacetime geometry:
o 4-dimensional spacetime manifold M.
o Metric ggp of Lorentzian signature (—, +, +, +).
o Orientation and time orientation of frames.
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Pseudo-Riemannian spacetime geometry

¢ Ingredients of pseudo-Riemannian spacetime geometry:
o 4-dimensional spacetime manifold M.
o Metric ggp of Lorentzian signature (—, +, +, +).
o Qrientation and time orientation of frames.

e Clock postulate: proper time measured by arc length.
= Arc length for curves t — ~(t) € M defined by the metric:

b
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Pseudo-Riemannian spacetime geometry

e Ingredients of pseudo-Riemannian spacetime geometry:
o 4-dimensional spacetime manifold M.
o Metric gg of Lorentzian signature (—, +, +, +).
o Qrientation and time orientation of frames.

e Clock postulate: proper time measured by arc length.
= Arc length for curves t — ~(t) € M defined by the metric:

17}
== [ \lga (0001

e Observables are components of tensor fields.
e Tensor components must be expressed in suitable basis.
= Metric provides notion of orthonormal frames:

gabfial;'b = njj -

= Orthogonal frame bundle 7 : P — M is principal SO(1, 3)-bundle.

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 16 June 2021 9/41



1. Introduction

2. Geometries
2.2 Finsler spacetime geometry
3. Application in physics

4. Conclusion

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 16 June 2021 10/41



Basics of Finsler spacetimes

e Finsler geometry defined by length functional for curve ~:

b

To— T4 = t F(~(t),5(1))at

e Finsler function F : TM — R ™.
e Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
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Basics of Finsler spacetimes

e Finsler geometry defined by length functional for curve ~:
b

To—T1 = F(y(t),~4(t))dt
b
e Finsler function F: TM — R*.

e Finsler geometries suitable for spacetimes exist. (c. preiter, M. wonifartn 1)
¢ Introduce manifold-induced coordinates (x4, y4) on TM:

o Coordinates x2 on M.

o Define coordinates y? for y?@ axa e T,M.

o Tangent bundle TTM spanned by {8a = W,aa = aya}
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Basics of Finsler spacetimes

e Finsler geometry defined by length functional for curve ~:
b
T2 =Ty = F(~(t),5(t))at
b
Finsler function F : TM — R™.
Finsler geometries suitable for spacetimes exist. (c. peiter, M. wonitarth 1]
Introduce manifold-induced coordinates (x4, y&) on TM:
o Coordinates x4 on M.

o Define coordinates y? for y2.,2; € T,M.

o Tangent bundle TTM spanned by {8a =2, 0a= aiya}
n-homogeneous functions on TM: f(x, Ay) = \"f(x, y).
o n-homogeneous smooth geometry function L : TM — R.
= 1-homogeneous Finsler function F = |L|n.
= Finsler metric with Lorentz signature:

1_- -
gg—b(xay) = EaaabFz(va) :
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Connections on Finsler spacetimes

e Cartan non-linear connection:

1- —
N = 235 |9 *(y0000F? — 9oF?)] .

= Berwald basis of TTM:
{62 = 0a— N°20p,02} .
= Dual Berwald basis of T*TM:
{dx? 5y? = dy? + N3pdx®} .
= Splits TTM = HTM ® VTM and T*TM = H*TM & V*TM.
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Connections on Finsler spacetimes

e Cartan non-linear connection:

N, = %@, (07 %(y?0406F? — 0.F?)] .
= Berwald basis of TTM:
{02 = 0a — N°20p, 0a} .
= Dual Berwald basis of T*TM:
{dx? 5y? = dy? + N3pdx®} .
= Splits TTM = HTM & VIMand T*TM = H*TM & V*TM.
e Cartan linear connection:

V.06 = Feandc, V5,00 = FCap0c, V5,00 = Capdc, V5,00 = CapOc

]

FCab = EQ'FCd(CSagt,):d + 0bGhy — 6a9kb) »
1 _ _ )

Cab = 59" “(Dagba + To92d — 9a9ab)
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Introduction to Cartan geometry

e Cartan geometry modeled on Klein geometry G/H:
o Gand H are Lie groups.
o H c Gis a closed subgroup of G.
= Coset space G/H is a homogeneous space acted upon by G.
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o Gand H are Lie groups.
o H c Gis a closed subgroup of G.
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Introduction to Cartan geometry

e Cartan geometry modeled on Klein geometry G/H:
o Gand H are Lie groups.
o H c Gis a closed subgroup of G.
= Coset space G/H is a homogeneous space acted upon by G.
e Principal H-bundle 7 : P — M:
o Right action-: Px H— P,(p,h) — p-h= Rx(p) of H.
o Action generated by fundamental vector fields & for a € b.
e Cartan connection A € Q'(P, g) satisfying:
1. Foreachp e P, A, = Alr,p : T,P — g is alinear isomorphism.
2. Ais H-equivariant: (Ry)*A= Ad(h—')o Aforall h € H.
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Introduction to Cartan geometry

e Cartan geometry modeled on Klein geometry G/H:
o Gand H are Lie groups.
o H c Gis a closed subgroup of G.
= Coset space G/H is a homogeneous space acted upon by G.
e Principal H-bundle 7 : P — M:
o Right action-: Px H — P,(p,h) — p- h= Ru(p) of H.
o Action generated by fundamental vector fields & for a € b.
e Cartan connection A € Q'(P, g) satisfying:
1. Foreach p € P, A, = Alr,p : T,P — g is alinear isomorphism.
2. Ais H-equivariant: (Ry)*A= Ad(h—')o Aforall h € H.
3. A(a)=aforallaceh.
= Dimensions of Cartan and Klein geometry are related:
o Dimension of the fibers: dim P — dim M = dim H.
o Dimension of the total space: dim P = dim G.
= Dimension of the base manifold:
dimM =dim G —dimH =dim G/H.

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 16 June 2021



Toy model for Cartan geometry: The hamster ball

e Consider a hamster ball on a two-dimensional surface:
o Two-dimensional Riemannian manifold (M, g).
o Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
o Hamster position and orientation marks frame p € P.
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Toy model for Cartan geometry: The hamster ball

e Consider a hamster ball on a two-dimensional surface:
o Two-dimensional Riemannian manifold (M, g).
o Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
o Hamster position and orientation marks frame p € P.

e Hamster’s degrees of freedom € T,P:

o Rotations around its position x = 7 (p).
o “Rolling without slippling” over M.
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Toy model for Cartan geometry: The hamster ball

e Consider a hamster ball on a two-dimensional surface:
o Two-dimensional Riemannian manifold (M, g).
o Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
o Hamster position and orientation marks frame p € P.
e Hamster’s degrees of freedom € T,P ~ ball motions € g = so(3):

o Rotations around its position x = 7(p): subalgebra h = so(2).
o “Rolling without slippling” over M: quotient space 3 = s0(3)/s0(2).
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Toy model for Cartan geometry: The hamster ball

e Consider a hamster ball on a two-dimensional surface:

o Two-dimensional Riemannian manifold (M, g).
o Orthonormal frame bundle = : P — M is principal SO(2)-bundle.
o Hamster position and orientation marks frame p € P.

e Hamster’s degrees of freedom € T,P ~ ball motions € g = so(3):
o Rotations around its position x = 7(p): subalgebra h = so(2).
o “Rolling without slippling” over M: quotient space 3 = so(3)/s0(2).
= Surface M “traced” by S? =~ SO(3)/SO(2) = G/H.
= Geometry of M fully described by Hamster ball motion.
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Klein geometries for spacetime and observer space

e Consider groups GD H D K:
o “Inhomogeneous group” - symmetry group of homogeneous space:

SOo(4,1) A=1
Gh={1S00(3,1) A=0
S0(3,2) A= -1

o “Homogeneous group” H = SOq(3, 1) - stabilizer of a point.
o “Observer group” K = SO(3) - stabilizer of a tangent vector.
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Klein geometries for spacetime and observer space

e Consider groups GD H D K:
o “Inhomogeneous group” - symmetry group of homogeneous space:

SOp(4,1) A=1
Gr=(1S0p(3,1) A=0
S00(3,2) A= -1
o “Homogeneous group” H = SOq(3, 1) - stabilizer of a point.
o “Observer group” K = SO(3) - stabilizer of a tangent vector.

e Induced split of Lie algebra g via Ad:
o lIrreducible representations of H C G on g:

g= b ® 3
~—~
Lorentz transformations  translations

o lIrreducible representations of K ¢ G on g:

g 0

b=t @& v , 5= 3 ® 3

~ ~—~ ~— ~—~
rotations  poosts spatial translations  temporal translations
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Cartan geometry of spacetime

e Consider Lorentzian manifold (M, g).
e Orthonormal frame bundle 7 : P — M.
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Cartan geometry of spacetime

e Consider Lorentzian manifold (M, g).
e Orthonormal frame bundle 7 : P — M.
e Split of the tangent spaces T,P:

o Infinitesimal Lorentz transforms € V,,P.
o Infinitesimal translations € H,P.
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Cartan geometry of spacetime

e Consider Lorentzian manifold (M, g).
e Orthonormal frame bundle 7 : P — M is principal H-bundle.
e Split of the tangent spaces ToP = g:

L

g = b+ 3
o Infinitesimal Lorentz transforms € V,P = 1.
o Infinitesimal translations € H,P = ;.
e Corresponding split of Poincaré algebra g:
o Lorentz algebra b.
o Translations ;.
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Cartan geometry of spacetime

e Consider Lorentzian manifold (M, g).
e Orthonormal frame bundle 7 : P — M is principal H-bundle.
e Split of the tangent spaces T,P = g:

SRR

g = b+ 3
o Infinitesimal Lorentz transforms € V,P = |.
o Infinitesimal translations € H,P = ;3.
e Corresponding split of Poincaré algebra g:
o Lorentz algebra b.
o Translations ;.

e Cartan connection A= w + e € Q'(P, g).
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Cartan geometry of spacetime

e Consider Lorentzian manifold (M, g).
e Orthonormal frame bundle 7 : P — M is principal H-bundle.
e Split of the tangent spaces T,P = g:

1]

g = b+ 3
o Infinitesimal Lorentz transforms € V,P = |.
o Infinitesimal translations € H,P = ;3.
e Corresponding split of Poincaré algebra g:
o Lorentz algebra b.
o Translations ;.

e Cartan connection A= w + e € Q'(P, g).
e Fundamental vector fields A : g — '(TP) as “inverse” of A.
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Cartan geometry of spacetime

e Consider Lorentzian manifold (M, g).
e Orthonormal frame bundle 7 : P — M is principal H-bundle.
e Split of the tangent spaces T,P = g:

1]

g = b+ 3
o Infinitesimal Lorentz transforms € V,P = |.
o Infinitesimal translations € H,P = ;3.

e Corresponding split of Poincaré algebra g:

o Lorentz algebra b.
o Translations ;.

e Cartan connection A= w + e € Q'(P, g).
e Fundamental vector fields A : g — I'(TP) as “inverse” of A.
= Geometry of M encoded in Aresp. A.
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Cartan geometry of observer space

e Consider Lorentzian manifold (M, g).
e Future unit timelike vectors O C TM.
e Orthonormal frame bundle = : P — O.
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Cartan geometry of observer space

e Consider Lorentzian manifold (M, g).
e Future unit timelike vectors O c TM.
e Orthonormal frame bundle = : P — O is principal K-bundle.
e Split of the tangent spaces T,P = g:

ToP = R,P + ByP + HyP + HSP

A

g = b o+ 9 o+ 7 o+ 3
Infinitesimal rotations € R, P = ¢.
Infinitesimal Lorentz boosts € B,P = 1.

Infinitesimal spatial translations € FlpP =~ 3.
Infinitesimal temporal translations € HyP = 3°.

[¢]

o

o

[¢]
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Cartan geometry of observer space

e Consider Lorentzian manifold (M, g).
e Future unit timelike vectors O c TM.
e Orthonormal frame bundle = : P — O is principal K-bundle.
e Split of the tangent spaces T,P = g:

TP = RP + ByP + HyP + HSP

Apl, Qp£ + b,,i + ép£ + egv(

g = b o+ 9 o+ 7 o+ 3
Infinitesimal rotations € R, P = ¢.
Infinitesimal Lorentz boosts € B,P = v.

Infinitesimal spatial translations € FlpP =
Infinitesimal temporal translations € HyP == 3°.

e Cartan connection A= Q + b+ é+ e° € Q'(P, g).
e Fundamental vector fields A : g — '(TP) as “inverse” of A.
= Geometry of M encoded in A resp. A. [s.Gielen, D. Wise '12]

[¢]

o

o

[¢]
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3. Application in physics
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From pseudo-Riemannian to Finsler

e Metric-induced 2-homogeneous geometry function:

L(x,y) = gap(x)y3y®.

= Finsler function F(x,y) = \/|L(x, y)|.
= Finsler metric

—g(x, for y timelike,
gF(X,}/):{ g( y) y

alx,y) for y spacelike.

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 16 June 2021



From pseudo-Riemannian to Finsler

e Metric-induced 2-homogeneous geometry function:
L(x,y) = gab(X)y2y®.

= Finsler function F(x,y) = \/|L(x, y)|.
= Finsler metric

—g(x, for y timelike,
gF(X, y) — g( y) y .
alx,y) for y spacelike.

= Cartan non-linear connection:
N3y =T8pcy°.
=- Cartan linear connection:

Fabc = rabm Cabc =0.
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From Finsler to Cartan

e Need to construct A € Q'(P, g).

o Recall that
g = b
A = w

e Definition of e: Use the solder form:

® 3
+ e

e = f1dx2.

e Definition of w: Use the Cartan linear connection:

Wy = 1710 [+ 10 (X F 2o + (@XONCq + ) C%o) |
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From Finsler to Cartan

e Need to construct A € Q'(P, g).

o Recall that
g = bh @& 3
A= w + e
e Definition of e: Use the solder form:
e = f1dx2.

Definition of w: Use the Cartan linear connection:

Wy = 1710 [+ 10 (X F 2o + (@XONCq + ) C%o) |

Leta= 22+ JhH/ € g.
Fundamental vector fields:

A(a) — Zif,-a <8a _ ’;’bFCabéé) + (hljfla _ hiOfibfjcCabC) 5{3
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3. Application in physics
3.1 Causality

3.2 Observers

3.3 Gravity
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Causal structure

Metric geometry
SIS

Geometry function:

L = gapy?y®

y2 timelike for L < 0.
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Causal structure

Metric geometry
SIS

Geometry function:

L = gapy?y®

y2 timelike for L < 0.

Finsler geometry

Fundamental geometfy function L
Hessian:

L=-1

1_ _
9ap(X.¥) = 50a06L(x.)

Use sign of L and signature of g-.
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Causal structure

Metric geometry Cartan geometry
s

Observer space:

Geometry function:

o= s

L= gabyayb xXeM
y2 timelike for L < 0. O contains only future
unit timelike vectors.

Finsler geometry

Fundamental geometfy function L
Hessian:

1_ _
9ap(X.¥) = 50a06L(x.)

Use sign of L and signature of g-.
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Causality of Finsler spacetimes

e “Unit timelike condition” required for Finsler spacetimes:
For all x € M the set

QX = {y € TXMHL(X>y)| = 17Sig535bL(X7y) = (67 —€, —¢, _6)}

with e = L(x, y)/|L(x, y)| contains a non-empty closed connected
component Sy C Q, C TxM.
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Causality of Finsler spacetimes

e “Unit timelike condition” required for Finsler spacetimes:
For all x € M the set

QX = {y € TXMHL(X>y)| = 17Sig535bL(X7y) = (67 —€, —¢, _6)}

with e = L(x, y)/|L(x, y)| contains a non-empty closed connected

component Sy C Qx C TyM. ~
P
= Sy contains L=
physical
observers.
= RTSyis

convex cone.
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The observer frame bundle

e Observer space of a Finsler spacetime:
o Consider all allowed observer tangent vectors:

o= |JSs..

xeM

o Tangent vectors y € Sq satisfy gF, (x, y)y2y? = 1.
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The observer frame bundle

e Observer space of a Finsler spacetime:
o Consider all allowed observer tangent vectors:

o= |JSs..

xeM

o Tangent vectors y € Sq satisfy g/, (x, y)yay? = 1.
e Construct orthonormal observer frames:
= Complete y = f, to a frame f; with g%, (x, y)f2fP = ;.
o Let P be the space of all observer frames.
o Natural projection 7 : P — O discards spatial frame components.
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The observer frame bundle

e Observer space of a Finsler spacetime:
o Consider all allowed observer tangent vectors:

o= |JSs..

xeM

o Tangent vectors y € Sq satisfy gF, (x, y)y2y? = 1.
e Construct orthonormal observer frames:
= Complete y = f; to a frame f; with gf,(x, y)f2fP = —n;.
o Let P be the space of all observer frames.
o Natural projection 7 : P — O discards spatial frame components.
e Group action on the frame bundle:

o SO(3) acts on spatial frame components by rotations.
o Action is free and transitive on fibers of 7 : P — O.
= 7 : P — Ois principal K-bundle.
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Observers

Metric geometry

Timelike curve ~:
v~ R - M

T = (1)

Gar1™3” = 1
Orthonormal frame f:

Gabff ’;‘b = Nij
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Observers

Metric geometry Finsler geometry

Timelike curve : Timelike curve ~:
7o R o= vy : R - M
7=l T = (r)
Gab¥34P = —1 Y(r) € Sy C TM
Orthonormal frame f: Canonical lift T':
fa = 42 F(r) = (v(7), (7))

Nr)eOcC ™
'} Orthonormal frame f:

Gabff ’;‘b = Nij

8 =47

F
gabfial?b = —Nj
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Observers

Metric geometry Finsler geometry Cartan geometry

Timelike curve ~:

v~ R - M
T = (1)

Gab¥?4° = —1
Orthonormal frame f:

Gabff ’;‘b = Nij

Manuel Hohmann (University of Tartu)

Timelike curve ~:

v : R - M
T = 7(7)

A(1) € S,Y(T) c ™
Canonical lift T':

F(r) = (v(7),¥(7))
Nr)eOcC ™
Orthonormal frame f:
f& =42

F
gabfial?b = —Nj

Finsler and Cartan geometry

Observer curve I':

r - R - O
T = I(7)

Lift condition:
&' (r) = &
Orthonormal frame f:

fer Y (I(r)cP

16 June 2021 28/41




Inertial observers

Metric geometry

Minimize arc length integral:

b
/t \/’gab(”r(f))ﬁa(f)"yb(t)\dt

Geodesic equation:

7%+ e3¢ = 0
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Inertial observers

Metric geometry Finsler geometry

Minimize arc length integral: Minimize arc length integral:
) b .
| Vimtrneieiet "R
1 1
Geodesic equation: Geodesic equation:
;_?a + rabc;)/b;yC — 0 ;)-/a + Nab,'yb — 0

Geodesic spray:
S = ya(aa - Nbaéb)

Integral curves:

[(7) = S(T(7))
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Inertial observers

Metric geometry Finsler geometry

Minimize arc length integral: Minimize arc length integral:
1 - L .
| Vimtrneieiet "R
1 1
Geodesic equation: Geodesic equation:
;_?a + rabc;)/b;yC — 0 ;)-/a + Nab,'yb — 0

Cartan geometry Geodesic spray:

Geodesic condition: B
- . S= ya(aa - Nbaab)
ber(r)=0
Integral curves:
Integral curves:

[(7) = S(T(7))

a Cartan geometry 16 June 2021



Observers on metric spacetimes

e Observer trajectories:

o Observer trajectory v in M.
o 4 must be timelike and future-directed.
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Observers on metric spacetimes

e Observer trajectories:

o Observer trajectory v in M.
o 4 must be timelike and future-directed.

e Inertial observers:
o Minimize arc-length functional:

/ * gm0t

= Geodesic equation:

38 4 T3e4P4° = 0.

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 16 June 2021



Observers on Finsler spacetimes

e Observer trajectories and canonical lifts:
o Observer trajectory v in M.
o Liftytoacurvel = (v,%)in TM.
o Curves I in TM are canonical lifts if and only if

[ oadx?=y2.

o Tangent vector (1) € S,(y; I'is curve in O C TM.
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Observers on Finsler spacetimes

e Observer trajectories and canonical lifts:
o Observer trajectory v in M.
o Liftytoacurvel = (v,%)in TM.
o Curves I in TM are canonical lifts if and only if

[ oadx?=y2.

o Tangent vector (1) € S,(y; I'is curve in O C TM.
¢ Inertial observers:
o Minimize arc length functional:

b

t F(y(1),3(t))at.

= Geodesic equation:
52+ N2yi® = 0.
= [ is integral curve of geodesic spray:

.r:S:ya(sa.
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Observers on Cartan observer space

e Observer curves:
o Consider curve I in O.
= Tangent vector splits into translation and boost:

M= (e"'r) e+ (bo‘l") b, .
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Observers on Cartan observer space

e Observer curves:
o Consider curve I in O.
= Tangent vector splits into translation and boost:

M= (e"l") e+ (b‘ﬂ") b, .

e Translational component of the tangent vector:
o Split into time and space components:

(e) &= (e ) &+ () e,

o Components are relative to observer’s frame.
= Physical observer: translation corresponds to time direction:

Er=1reT=0s¢€T=¢).
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Observers on Cartan observer space

e Observer curves:
o Consider curve I in O.
= Tangent vector splits into translation and boost:

M= (e"l") e+ (b‘ﬂ") b, .

e Translational component of the tangent vector:
o Split into time and space components:

(e) &= (e ) &+ () e,

o Components are relative to observer’s frame.
= Physical observer: translation corresponds to time direction:

Er=1reT=0s¢€T=¢).

e Boost component of the tangent vector:
o Measures acceleration in observer’s frame.
o Inertial observers are non-accelerating: b*T" = 0. _
= Inertial observers follow integral curves of time translation: I' = g,.
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Observers from Finsler to Cartan

e Generating vector field on Finsler spacetimes:

o Geodesic spray S preserves Finsler function: SF = 0.
= Geodesic spray S is tangent to observer space O (level set).
~ Define Reeb vector field r = §|o.

o Coordinate expression: r = y3(d; — N°,0p).
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Observers from Finsler to Cartan

e Generating vector field on Finsler spacetimes:
o Geodesic spray S preserves Finsler function: SF = 0.
= Geodesic spray S is tangent to observer space O (level set).
~ Define Reeb vector field r = §|o.
o Coordinate expression: r = y3(d; — N°,0p).
e Generating vector field on Cartan observer space:
o Fundamental vector field induced by time translation:

&y = foa (&a - Gchabéé) .
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Observers from Finsler to Cartan

e Generating vector field on Finsler spacetimes:

o Geodesic spray S preserves Finsler function: SF = 0.
= Geodesic spray S is tangent to observer space O (level set).
~ Define Reeb vector field r = §|o.

o Coordinate expression: r = y3(d; — N°,0p).

e Generating vector field on Cartan observer space:
o Fundamental vector field induced by time translation:

& = ya (83 - f/'bFCabéé) .

o Temporal frame component is observer velocity: f§ = y2.
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Observers from Finsler to Cartan

e Generating vector field on Finsler spacetimes:
o Geodesic spray S preserves Finsler function: SF = 0.
= Geodesic spray S is tangent to observer space O (level set).
~ Define Reeb vector field r = §|o.
o Coordinate expression: r = y3(d; — N°,0p).
e Generating vector field on Cartan observer space:
o Fundamental vector field induced by time translation:

ey = (y20a— 1PN°s3L) .

o Temporal frame component is observer velocity: f§ = y2.
o Relation between connections coefficients: y2F°¢,, = N°,.
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Observers from Finsler to Cartan

e Generating vector field on Finsler spacetimes:

o Geodesic spray S preserves Finsler function: SF = 0.
= Geodesic spray S is tangent to observer space O (level set).
~ Define Reeb vector field r = §|o.

o Coordinate expression: r = y3(d; — N°,0p).

e Generating vector field on Cartan observer space:
o Fundamental vector field induced by time translation:

ey = (y20a— 1PN°53L) .

o Temporal frame component is observer velocity: f§ = y2.
o Relation between connections coefficients: y2F°¢,, = N°,.

= Observer trajectories I agree in Finsler and Cartan descriptions.
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Observers from Finsler to Cartan

e Generating vector field on Finsler spacetimes:

o Geodesic spray S preserves Finsler function: SF = 0.
= Geodesic spray S is tangent to observer space O (level set).
~ Define Reeb vector field r = §|o.

o Coordinate expression: r = y3(d; — N°,0p).

e Generating vector field on Cartan observer space:
o Fundamental vector field induced by time translation:

ey = (y20a— 1PN°53L) .

o Temporal frame component is observer velocity: f§ = y2.
o Relation between connections coefficients: y2F°¢,, = N°,.
= Observer trajectories I agree in Finsler and Cartan descriptions.

= Cartan trajectories correspond to Finslerian parallel transport.
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Metric geometry

Einstein-Hilbert action: Se = 21_5/ d*xy—gR
M
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Metric geometry

Einstein-Hilbert action: SEH=21/ d*xy=gR
K Jm

Finsler geometry
Using non-linear connection:

SN = 1/VOIG‘ Raabyb
x>

K

Using linear connection:

S = 1 /z Vol gF R aep

K
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Metric geometry

Einstein-Hilbert action: SEH=21/ d*xy=gR
K Jm

Finsler geometry Cartan geometry

Using non-linear connection: Using horizontal vector fields:
1 PP
Sn = /VOlé R aby® S :/ b*([&,, &) Volo
K Jy o
Using linear connection: Using Cartan curvature:
1 . .
EL = / Vo|égFabRcaCb Sc = / Kh(Fh A Fb) A Volg
K Jy (0]
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Metric geometry

Einstein-Hilbert action: SEH=21/ d*xy=gR
K Jm

Finsler geometry Cartan geometry

Using non-linear connection: Using horizontal vector fields:

Sv=y [VolgRlay® B Su= [ B(u &) Volo
5 (0]

K

Using linear connection: Using Cartan curvature:

K

SL—1/VO|GgFabRCaCb ~ SC:/ Kh(ﬁh/\l:_b)/\VOLg
X ()
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Gravity from Cartan to Finsler

e MacDowell-Mansouri gravity on observer space: is. cieien, 0. wise 12]

SG:/eoéﬁ,ytl’h(/:h/\‘kl:h)/\ba/\bﬂ/\b7
o

o Hodge operator x on bh.
o Non-degenerate H-invariant inner product try, on b.
o Boost part b € Q4(P,y) of the Cartan connection.
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Gravity from Cartan to Finsler

e MacDowell-Mansouri gravity on observer space: is. cieien, 0. wise 12]

SG:/eoéﬁ,ytl’h(/:h/\‘kl:h)/\ba/\bﬂ/\b7
(0]

o Hodge operator x on bh.
o Non-degenerate H-invariant inner product try, on b.
o Boost part b € Q4(P,y) of the Cartan connection.

e Translate terms into Finsler language (with R = dw + %[w,w]):
o Curvature scalar:

[e,e] AxR ~ gF 3 RC,pdV .
o Cosmological constant:
[e, e] A x[e, e] ~ dV.
o Gauss-Bonnet term:
RA %R ~ ¢ R ot Reggn dV .

= Gravity theory on Finsler spacetime.
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Gravity from Finsler to Cartan

e Finsler gravity action: (c. preiter, . wonitarth 11)
Sg = /o d*x d®y\/—GRZyP.

o Sasaki metric G on O.
o Non-linear curvature R4,,.

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 16 June 2021



Gravity from Finsler to Cartan

e Finsler gravity action: (c. preiter, . wonitarth 11)
Sg = /o d*x d®y\/—GRZyP.

o Sasaki metric G on O.
o Non-linear curvature R4,,.

e Translate terms into Cartan language:

d*xd®y \/ —G = cjigcap € NE NEKNEANDEADI ALY,
R2aby° = b[A(2.), A(Z0)] -

= Gravity theory on observer space.
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4. Conclusion
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e Finsler spacetimes

Generalization of pseudo-Riemannian spacetimes.
Geometry defined by function L on TM.

Lengths measured by Finsler function F = |L|5.
Metric generalized by Finsler metric gf,..

[¢]

O O O
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e Finsler spacetimes

Generalization of pseudo-Riemannian spacetimes.
Geometry defined by function L on TM.

Lengths measured by Finsler function F = |L|5.
Metric generalized by Finsler metric gf,..

e Cartan geometry on observer space

Can be obtained from Finsler spacetimes.

Geometry on principal SO(3)-bundle 7 : P — O.
Space O of physical observer four-velocities.

Space P of physical observer frames.

Geometry defined by Cartan connection A € Q'(P, g).

[¢]

O O O

O O O O O
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e Finsler spacetimes

Generalization of pseudo-Riemannian spacetimes.
Geometry defined by function L on TM.

Lengths measured by Finsler function F = |L|5.
Metric generalized by Finsler metric gf,..

e Cartan geometry on observer space

Can be obtained from Finsler spacetimes.

Geometry on principal SO(3)-bundle 7 : P — O.
Space O of physical observer four-velocities.

Space P of physical observer frames.

Geometry defined by Cartan connection A € Q'(P, g).

o Different geometries provide compatible definitions of:

o Causality

o Observers
o Observables
o Gravity

[¢]

O O O

O O O O

[¢]
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Caveats and outlook

e Observer space not most suitable for Lagrange theory:
Lagrangian defined on jet bundle over configuration bundle.
Critical sections: solutions of Euler-Lagrange equations.
Euler-Lagrange equations determined from variational calculus.
Variational calculus assumes fixed configuration bundle.

Finsler observer space depends on length function L.

[¢]

™~ O O O
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Caveats and outlook

e Observer space not most suitable for Lagrange theory:

o Lagrangian defined on jet bundle over configuration bundle.

o Critical sections: solutions of Euler-Lagrange equations.

o Euler-Lagrange equations determined from variational calculus.
Variational calculus assumes fixed configuration bundle.
4 Finsler observer space depends on length function L.

e Proper approach uses positive projective tangent bundle:

o PTMT*: equivalence classes [v] = {\v, A € R*} of tangent vectors.
o Finsler length function: section of associated bundle over PTM.
v Configuration bundle independent of dynamical geometry.

o
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Caveats and outlook

e Observer space not most suitable for Lagrange theory:

o Lagrangian defined on jet bundle over configuration bundle.

o Critical sections: solutions of Euler-Lagrange equations.

o Euler-Lagrange equations determined from variational calculus.
Variational calculus assumes fixed configuration bundle.
4 Finsler observer space depends on length function L.

e Proper approach uses positive projective tangent bundle:
o PTMT*: equivalence classes [v] = {\v, A € R*} of tangent vectors.
o Finsler length function: section of associated bundle over PTM.
v Configuration bundle independent of dynamical geometry.
e Work done in projective bundle approach:
Finsler gravity action from variational completion H, preiter, voicu 18]
Relativistic kinetic gases H, preiter, Voicu 19]
Cosmological Finsler spacetimes mH, preifer, voicu '20]
Finsler spacetimes as backgrounds for field theories i, preiter, voicu 217]

o

o

O O O
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Caveats and outlook

e Observer space not most suitable for Lagrange theory:

o Lagrangian defined on jet bundle over configuration bundle.

o Critical sections: solutions of Euler-Lagrange equations.

o Euler-Lagrange equations determined from variational calculus.
Variational calculus assumes fixed configuration bundle.
4 Finsler observer space depends on length function L.

e Proper approach uses positive projective tangent bundle:
o PTMT*: equivalence classes [v] = {\v, A € R*} of tangent vectors.
o Finsler length function: section of associated bundle over PTM.
v Configuration bundle independent of dynamical geometry.
e Work done in projective bundle approach:
Finsler gravity action from variational completion H, preiter, voicu 18]
Relativistic kinetic gases H, preiter, Voicu 19]
Cosmological Finsler spacetimes mH, preifer, voicu '20]
Finsler spacetimes as backgrounds for field theories i, preiter, voicu 217]

o

o

O O O

e Cartan geometry version of projective bundle approach?
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