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Problems in gravity and cosmology

e So far unexplained cosmological observations:

o Accelerating expansion of the universe
o Homogeneity of cosmic microwave background
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Problems in gravity and cosmology

e So far unexplained cosmological observations:
o Accelerating expansion of the universe
o Homogeneity of cosmic microwave background
Models for explaining these observations:
o ACDM model / dark energy
o Inflation
Physical mechanisms are not understood:

o Unknown type of matter?

o Modification of the laws of gravity?

o Scalar field in addition to metric mediating gravity?
o Quantum gravity effects?

Idea here: modification of the geometrical structure of spacetime!

o Replace metric spacetime geometry by Finsler geometry.

o Similarly: replacing flat spacetime by curved spacetime led to GR.

o Replace perfect fluid model by velocity-dependent distribution of particles.
Questions arising from new matter model:

v~ How does a kinetic gas react to a gravitational field?
? How does a kinetic gas create a gravitational field?
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Examples of fluids

o Perfect fluid:
o Most general energy-momentum tensor compatible with cosmological symmetry.
o No shear stress, no friction.
o Characterized by density p and pressure p.
» Dust, dark matter: p =0.
« Radiation: p = $p.
« Dark energy: p< -3p.
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Examples of fluids

e Perfect fluid:
o Most general energy-momentum tensor compatible with cosmological symmetry.
o No shear stress, no friction.
o Characterized by density p and pressure p.
» Dust, dark matter: p =0.
« Radiation: p = $p.
« Dark energy: p< -3p.
Collisionless fluid:
o Model for dark matter.
o “Dust” - non-interacting point masses (stars, galaxies etc.).
Interacting fluid:
o Maxwell-Boltzmann gas: gas with non-vanishing pressure.
o Plasma (fluid with multiple types of electrically charged particles).
Imperfect fluids:
o Include shear, friction, viscosity.
o Dissipation of kinetic energy into heat.
Hyperfluid:
o Additional coupling to affine connection generates hypermomentum.
o Intrinsic property of matter, e.g., spin.
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Why study matter beyond fluids?

e Dynamical friction:
o Massive object passes distribution of light objects.
= Gravity of massive object changes positions of lighter objects.
= Perturbation of light objects asserts gravity on massive object.
o Example: globular cluster passing through galaxy.
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Why study matter beyond fluids?

e Dynamical friction:

o Massive object passes distribution of light objects.
= Gravity of massive object changes positions of lighter objects.
= Perturbation of light objects asserts gravity on massive object.
o Example: globular cluster passing through galaxy.

Splashback:
o Gravitational collapse of galaxy cluster.
o Galaxies pass each other near center of collapse.
Stellar streams:
o Globular cluster orbiting galaxy disrupted by tidal force.
o Constituting stars continue orbiting galaxy.
Galaxies changing their environment:
o Galaxy collisions: colliding gas, passing stars.
o Galaxy entering filament or galaxy cluster.
Dynamics of intergalactic medium:

o Cosmic gas highways: gas in and near filaments
o Crossing sheets in collapse and structure formation.
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9 Dynamics of the kinetic gas
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Definition of kinetic gas

e Single-component gas:
o Constituted by classical, relativistic particles.
o Particles have equal properties (mass, charge, ...).
o Particles follow piecewise geodesic curves.
o Endpoints of geodesics are interactions with other particles.
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Definition of kinetic gas

e Single-component gas:

o Constituted by classical, relativistic particles.

o Particles have equal properties (mass, charge, ...).

o Particles follow piecewise geodesic curves.

o Endpoints of geodesics are interactions with other particles.
o Collisionless gas:

o Particles do not interact with other particles.

= Particles follow geodesics.
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Definition of kinetic gas

e Single-component gas:

o Constituted by classical, relativistic particles.

o Particles have equal properties (mass, charge, ...).

o Particles follow piecewise geodesic curves.

o Endpoints of geodesics are interactions with other particles.
o Collisionless gas:

o Particles do not interact with other particles.

= Particles follow geodesics.

o Multi-component gas: multiple types of particles.
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One-particle distribution function

» Kinetic gas described by density in velocity space:

o Consider space O of physical (unit, timelike, future pointing) four-velocities.
o Consider density on physical velocity space.
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One-particle distribution function

» Kinetic gas described by density in velocity space:

o Consider space O of physical (unit, timelike, future pointing) four-velocities.
o Consider density on physical velocity space.

» Define one-particle distribution function ¢ : O — R* such that:
For every hypersurface o c O,

N[o] = / 40
# of particle trajectories through o. .

o

o Counting of particle trajectories respects hypersurface orientation.
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One-particle distribution function

» Kinetic gas described by density in velocity space:

o Consider space O of physical (unit, timelike, future pointing) four-velocities.
o Consider density on physical velocity space.

» Define one-particle distribution function ¢ : O — R* such that:
For every hypersurface o c O,

N[o] = / 40
# of particle trajectories through o. .

o

o Counting of particle trajectories respects hypersurface orientation.
e For multi-component fluids: ¢; for each component i.
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Collisions & the Liouville equation

« Collision in spacetime «~ interruption in observer space.

g
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Collisions & the Liouville equation

« Collision in spacetime «~ interruption in observer space.

e For any open set V € O,

f,09= [ d62)= [ £z

# of outbound trajectories - # of inbound trajectories.
= Collision density measured by L;¢.
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Collisions & the Liouville equation

« Collision in spacetime «~ interruption in observer space.

e For any open set V € O,

f,09= [ d62)= [ £z

# of outbound trajectories - # of inbound trajectories.
= Collision density measured by L¢.
e Collisionless fluid: trajectories have no endpoints, L;¢ = 0.
= Simple, first order equation of motion for collisionless fluid.
= ¢ is constant along integral curves of r.

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021



Some (very) pictorial examples

Geodesic dust fluid:
d(x,y) ~6(y - u(x)).
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Geodesic dust fluid:

d(x,y) ~(y - u(x)).
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Manuel Hohmann (University of Tartu)

Some (very) pictorial examples
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Some (very) pictorial examples
Geodesic dust fluid: Collisionless fluid: Interacting fluid:
o(x,y) ~6(y - u(x)). Lrp=0. Lrd£0.
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Some (very) pictorial examples

Geodesic dust fluid:

d(x,y) ~(y - u(x)).
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Collisionless fluid:
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Interacting fluid:
Lrp+0.
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Example: collisionless dust fluid

e Variables describing a classical dust fluid:

o Mass density p: M - R*.
o Velocity u: M - O.
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Example: collisionless dust fluid

e Variables describing a classical dust fluid:

o Mass density p: M - R*.
o Velocity u: M - O.

e Particle density function:

¢(X,y) ~ p(X)ds, (¥, u(x)) .

e Apply Liouville equation:
0 =vu? = uPopu? + UPN?

1 -
0= Vs, (pu?) = Da(p®) + 5 pu?g" ™ (Dagfe ~ Nadagh)
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Example: collisionless dust fluid

e Variables describing a classical dust fluid:

o Mass density p: M - R*.
o Velocity u: M - O.

e Particle density function:

¢(X,y) ~ p(X)ds, (¥, u(x)) .

e Apply Liouville equation:
0 =vu? = uPopu? + UPN?y

1 -
0= Vs, (pu?) = Oa(pu®) + 5 pu?g" " (Dahe - Nadaghs) -

= Generalized (pressureless) Euler equations to Finsler geometry m s
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Example: collisionless dust fluid

e Variables describing a classical dust fluid:

o Mass density p: M - R*.
o Velocity u: M - O.

e Particle density function:

¢(X,y) ~ p(X)ds, (¥, u(x)) .

e Apply Liouville equation:
0 =vu? = uPopu? + UPN?y

1 -
0= Vs, (pu?) = Oa(pu®) + 5 pu?g" " (Dahe - Nadaghs) -

= Generalized (pressureless) Euler equations to Finsler geometry m s
o Metric limit F2(x, y) = |gan(x)y2y®| yields Euler equations:

UPvpud =0, Va(pu?)=0.
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e Kinetic gases and gravity
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Action of a kinetic gas

Action for a single point particle:
t
s=m [ (Feen(r)dr. e (D)

Assume arc length parameter 7:

S=mt. ¢1(0)
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Action of a kinetic gas

Action for P point particles:

Pt C2(t) Ca(t)
Sps=mY. [ (Foo)(mar. Aoy os(1)
i=1
Assume arc length parameter 7:
c2(0) c4(0)
Sgas = Pmt. c1(0) c3(0)
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Action of a kinetic gas

e Hypersurface of starting points:

Cj(O) €0g. Cz(t)
ci () cs(t)

/02(0) / c3(0)
'

Ca(1)

70

c1(0)

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 14/23



Action of a kinetic gas

e Hypersurface of starting points: ( /
Cj(O) €0g. c (t) \
2
o Hypersurface of end points: ci(t) cs(t)
C,‘(t) €0¢. /I
c2(0) /
c1(0)

'
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Action of a kinetic gas

e Hypersurface of starting points: ( /

Cj(O) €0g. c (t) \

2

o Hypersurface of end points: ci(t) cs(t)

C,‘(t) €0¢. /I

: N c2(0)
o Number of particle trajectories:
c1(0)

P=Nlo]= [ o0. \ K
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Action of a kinetic gas

o Consider volume

t
V=o-.
7=0
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Action of a kinetic gas

o Consider volume

t
V=o-.
7=0

¢ Recall particle action integral:

Defined through 1-PDF ¢

[MH, Pfeifer, Voicu '19].
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Action of a kinetic gas

o Consider volume

t
V=o-.
7=0

Ot

¢ Recall particle action integral:

Defined through 1-PDF ¢

[MH, Pfeifer, Voicu '19].

= Forget particle trajectories!

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 14/23



Gravitational action

o Gravitational part of the action:

1
Sgrav = ﬁ [/ ROZ-
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Gravitational action

o Gravitational part of the action:

1
Sgrav = ﬁ [/ ROZ-

« Finsler Ricci scalar Ry = L~1R?,,y? from curvature of non-linear connection:

Rabcga = (5bNac - 5cNab)5a = [5b7 50] .
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Gravitational action

o Gravitational part of the action:

1
Sgrav = ﬁ [/ ROZ-

« Finsler Ricci scalar Ry = L~1R?,,y? from curvature of non-linear connection:
Rabcga = (5bNac - 5cNab)5a = [5b7 50] :

I Unique action obtained from variational completion of Rutz equation m, preiter, voicu 18]
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Gravitational action

o Gravitational part of the action:

1
Sgrav = ﬁ [/ ROZ-

« Finsler Ricci scalar Ry = L~1R?,,y? from curvature of non-linear connection:
Rabcga = (5bNac - 5cNab)5a = [5b7 50] :

I Unique action obtained from variational completion of Rutz equation mm, peiter, voicu 18]
= Reduces to Einstein-Hilbert action for metric geometry.
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Variation and field equations

 Variation of the kinetic gas action:

oF
5FSgaS = ﬁ¢fz .
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Variation and field equations

 Variation of the kinetic gas action:
oF
0FSgas = f —.
Fgas Vd) F
« Variation of the Finsler gravity action:

1 = = = OF
OF Sgrav = 2 ./v [EQFabaaab(FZRo) ~3Ro - 9" (V5,Py— PaPp+ 3a(VPb))] ?Z.
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Variation and field equations

 Variation of the kinetic gas action:
oF
= —.
5FSgas fvd) F
« Variation of the Finsler gravity action:
1 = = ~ oF
S¢Sy =2 [EgFabaaab(F‘?Ro) 3Ry gF ®(Vs,Py - PaPp + aa(vPb))] ET

e Landsberg tensor measures deviation from metric geometry:

P = 3cN3p — T3,  Pa=PPp,.
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Variation and field equations

 Variation of the kinetic gas action:
oF
JF Sqas = f Ty

Fgas v d) F

« Variation of the Finsler gravity action:
1 Fabs 5 2 Fab = oF
OF Sgrav = 2 ./v [EQ 020p(F*Ro) ~3Ro — g “*(Vs,Pp— PaPp + 3a(VPb))] Fr
e Landsberg tensor measures deviation from metric geometry:
P?he = 9cN? — T, Pa=PP,.

= Gravitational field equations with kinetic gas matter i, peiter, voicu 19

1 - _
59" *0a0p(F*Ro) 3o = g *(V5,Po ~ PaPp + 0a(VPp)) = ~%¢

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021



Physical implications

e There are no metric non-vacuum solutions to the field equations.
o Field equations in case of a metric geometry F2 = g, (x)y2y®:

3rap(X)y?y® = r(x)Gan(X)yy® = k26 gan(X)y?y".
o Second derivative with respect to velocities y2 and y*:
3rab(x) - r(X)gab(X) = _“2¢gab(x) .

= 1-PDF ¢ must depend only on x, i.e., independent of velocities y.
7 Unphysical velocity distribution: uniform over all (arbitrarily high) velocities!
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Physical implications

e There are no metric non-vacuum solutions to the field equations.
o Field equations in case of a metric geometry F2 = g, (x)y2y®:

3rap(X)y?y® = r(x)Gan(X)yy® = k26 gan(X)y?y".
o Second derivative with respect to velocities y2 and y*:
3rab(x) - r(X)gab(X) = _Hzﬁbgab(x) .

= 1-PDF ¢ must depend only on x, i.e., independent of velocities y.
7 Unphysical velocity distribution: uniform over all (arbitrarily high) velocities!
= Gravitational field of a kinetic gas always depends on the velocity of the observer.
o For observers whose velocity exceeds that of any gas particles:

1 o _
EgFabaaab(FZRO) -3Ry - gFab(V(;an = PaPy +0a(VPy)) - 0

o Solution of the differential equation still depends on ¢ via boundary conditions.
= Observers at velocities beyond gas velocities are still affected, but differently.
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e Applications to cosmology
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Cosmological symmetry

¢ Introduce suitable coordinates on TM:

tr0,0,y, " y0 y% .
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Cosmological symmetry

¢ Introduce suitable coordinates on TM:
tr, 0.0,y v,y y%.

e Most general Finsler function obeying cosmological symmetry:

_ t 2_(yr)2 2 (0 0N | s 20 0N2
F=F(ty,w), w =Tt ((y*)% +sin®0(y¥)?) .

« Homogeneity of Finsler function F(t,y!, w) = y'F(t, w/y?).
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Cosmological symmetry

¢ Introduce suitable coordinates on TM:

tr0,0,y, " y0 y% .

e Most general Finsler function obeying cosmological symmetry:

ry2
F=F(ty' w), w?-= 1(y Izr2 +r? ((y‘g)2 +sin? G(y“")z) )
« Homogeneity of Finsler function F(t,y!, w) = y'F(t, w/y?).
« Introduce new coordinates: j = y'F(t,w/y!), w = w/y'.
= Coordinates on observer space O with y = 1.
— Geometry function F(t, W) on O.
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Cosmological fluid dynamics

e Most general fluid obeying cosmological symmetry:

¢ =o(t,w).
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Cosmological fluid dynamics

e Most general fluid obeying cosmological symmetry:

¢ =o(t,w).

 Collisionless fluid satisfies Liouville equation p1s:

i F
0=Lrp== (8t¢— 2 I~__8v~v¢>)-
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Cosmological fluid dynamics

e Most general fluid obeying cosmological symmetry:

¢ =o(t,w).

 Collisionless fluid satisfies Liouville equation p1s:

104 F
0=Lep== (8t¢— 52 = m)

o Example: collisionless dust fluid ¢(x, y) ~ p(x)ds, (¥, u(x)):

u(t) = #’O)at, o (0(0\/o7(1.0)) =0

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 20/23



Cosmological fluid dynamics

Most general fluid obeying cosmological symmetry:

¢ =o(t,w).

Collisionless fluid satisfies Liouville equation m s:

0=Let - (3t¢—ata 2 m)

2 F

Example: collisionless dust fluid ¢(x,y) ~ p(x)ds, (¥, u(x)):

u(t) = #O)au o (s(0\/e"(1.0)) -

)

Next task: solve cosmological field equations with kinetic gas.
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Outline

e Conclusion
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Conclusion

e Summary:

o Kinetic gas dynamics:
Model many-particle systems defined by individual point mass trajectories.
Consider space O of physical four-velocities (future unit timelike vectors).
Define one particle distribution function as function ¢ on velocity space.
Collisionless fluid satisfies Liouville equation Lr¢ = 0.

* o o
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Conclusion

e Summary:
o Kinetic gas dynamics:
» Model many-particle systems defined by individual point mass trajectories.
» Consider space O of physical four-velocities (future unit timelike vectors).
» Define one particle distribution function as function ¢ on velocity space.
» Collisionless fluid satisfies Liouville equation L¢ = 0.
o Kinetic gases and gravity on Finsler spacetimes:
Finsler gravity action obtained uniquely by using variational completion method.
Kinetic gas action derived by summing over individual particle actions.
Coupling of kinetic gas to gravity arises naturally.
Geometry induced by gravitating kinetic gas is necessarily Finslerian.

* ok ok ok
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Conclusion

e Summary:

o Kinetic gas dynamics:
» Model many-particle systems defined by individual point mass trajectories.
» Consider space O of physical four-velocities (future unit timelike vectors).
» Define one particle distribution function as function ¢ on velocity space.
» Collisionless fluid satisfies Liouville equation L¢ = 0.

o Kinetic gases and gravity on Finsler spacetimes:
= Finsler gravity action obtained uniquely by using variational completion method.
= Kinetic gas action derived by summing over individual particle actions.
» Coupling of kinetic gas to gravity arises naturally.
» Geometry induced by gravitating kinetic gas is necessarily Finslerian.

o Applications to cosmology:
» Both geometry and one-particle distribution function depend on 2 coordinates.
» Simple Liouville equation for kinetic gas dynamics.
7 Gravitational field equations still rather involved.
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Conclusion

e Summary:
o Kinetic gas dynamics:
» Model many-particle systems defined by individual point mass trajectories.
» Consider space O of physical four-velocities (future unit timelike vectors).
» Define one particle distribution function as function ¢ on velocity space.
= Collisionless fluid satisfies Liouville equation £y¢ = 0.
o Kinetic gases and gravity on Finsler spacetimes:
» Finsler gravity action obtained uniquely by using variational completion method.
» Kinetic gas action derived by summing over individual particle actions.
» Coupling of kinetic gas to gravity arises naturally.
» Geometry induced by gravitating kinetic gas is necessarily Finslerian.
o Applications to cosmology:
» Both geometry and one-particle distribution function depend on 2 coordinates.
» Simple Liouville equation for kinetic gas dynamics.
7 Gravitational field equations still rather involved.
o Qutlook:
Cosmological solutions with non-metric geometry: Dark energy? Inflation?
Weak field limit: Newtonian, post-Newtonian. ..
Dynamical friction?
Stellar streams?
Dynamics of heterogeneous systems: stars + gas in galaxies?

O O O O o
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