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Why study modified dispersion relations?

e Observations in astronomy and cosmology rely on “messengers”:
o Photons - wide energy range from radio to gamma.
o Other particles (predominantly protons and neutrinos).
o Gravitational waves.
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Why study modified dispersion relations?

e Observations in astronomy and cosmology rely on “messengers”:

o Photons - wide energy range from radio to gamma.
o Other particles (predominantly protons and neutrinos).
o Gravitational waves.

e Propagation of messengers governed by dispersion relation.
o Most common dispersion relation derived from general relativity.

e Reasons to study modified dispersion relations (MDR):

o Interacting matter halos around astrophysical sources.
o Quantum gravity phenomenology and spacetime substructure.
o Modified theories of gravity and extra fields.
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Why study modified dispersion relations?

e Observations in astronomy and cosmology rely on “messengers”:

o Photons - wide energy range from radio to gamma.
o Other particles (predominantly protons and neutrinos).
o Gravitational waves.

Propagation of messengers governed by dispersion relation.

Most common dispersion relation derived from general relativity.
Reasons to study modified dispersion relations (MDR):

o Interacting matter halos around astrophysical sources.
o Quantum gravity phenomenology and spacetime substructure.
o Modified theories of gravity and extra fields.

Effects on messenger propagation by spherical sources:

o Circular orbits and “shadows” of compact objects.
o Shapiro time delay.
o Deflection angles and gravitational lensing.
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Why study modified dispersion relations?

Observations in astronomy and cosmology rely on “messengers”:

o Photons - wide energy range from radio to gamma.
o Other particles (predominantly protons and neutrinos).
o Gravitational waves.

Propagation of messengers governed by dispersion relation.

Most common dispersion relation derived from general relativity.
Reasons to study modified dispersion relations (MDR):

o Interacting matter halos around astrophysical sources.
o Quantum gravity phenomenology and spacetime substructure.
o Modified theories of gravity and extra fields.

Effects on messenger propagation by spherical sources:

o Circular orbits and “shadows” of compact objects.
o Shapiro time delay.
o Deflection angles and gravitational lensing.

MDR may in general introduce energy-dependence of these effects.
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0 Spherically symmetric modified dispersion relations
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Dispersion relations as Hamiltonians

e Hamiltonian picture of point mass dynamics:
o Describe particle motion in position-momentum variables (x*, p,,).
o Variables are coordinates on the cotangent bundle T*M of spacetime M.
o Introduce abbreviations:

o s 0
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Dispersion relations as Hamiltonians

e Hamiltonian picture of point mass dynamics:
o Describe particle motion in position-momentum variables (x*, p,,).
o Variables are coordinates on the cotangent bundle T*M of spacetime M.

o Introduce abbreviations:

o s 0

e Dynamics governed by Hamiltonian H(x, p):
o Dispersion relation defines “mass shell” of point mass:

m?
H(X7p) = _?‘

o Hamiltonian equations of motion:
p.=-0.H, x"=0"H.

o Mass m is constant of motion = motion confined to mass shell.

Manuel Hohmann (University of Tartu) Observables from spherically symmetric MDR Tartu-Tuorla - 6. May 2022



Dispersion relations as Hamiltonians

e Hamiltonian picture of point mass dynamics:
o Describe particle motion in position-momentum variables (x*, p,,).
o Variables are coordinates on the cotangent bundle T*M of spacetime M.

o Introduce abbreviations:

o s 0

e Dynamics governed by Hamiltonian H(x, p):
o Dispersion relation defines “mass shell” of point mass:
m2

H(x,p) = -5

o Hamiltonian equations of motion:
p.=-0.H, x"=0"H.

o Mass mis constant of motion = motion confined to mass shell.
e Point mass Hamiltonian in general relativity:
o Metric g,,,.(x) defines H(x,p) = %g"”(x)pupy.
= Equations of motion give geodesic equation.
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Static spherically symmetric modified dispersion relations

e Introduce spherical position-momentum variables:

(X“)Z(t,l’,a,gb), (Pu):(PhPr,P@ans).
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Static spherically symmetric modified dispersion relations

e Introduce spherical position-momentum variables:

(x*)=(t,r,0,6),  (Pu) = (Pt:Pr,Po; Py) -
o Consider static, spherically symmetric Hamiltonian:

>
P

H=H(r,p:,pr,w), w?=p3+ Z .
sin“ 6
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Static spherically symmetric modified dispersion relations

e Introduce spherical position-momentum variables:

(x*)=(t,r,0,6),  (Pu) = (Pt:Pr,Po; Py) -
o Consider static, spherically symmetric Hamiltonian:

2

p
H=H(r,p:,pr,w), w?=p3+ Z .
sin© @

= Constants of motion:
o Energy € = p;:
81H =0 = 0= ,bt-
o Angular momentum £ = py:
OpH=0 = 0=p,.
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Static spherically symmetric modified dispersion relations

e Introduce spherical position-momentum variables:

(x") = (t,r,0,9), (Pu) = (Pt,Pr, Py, Py) -
o Consider static, spherically symmetric Hamiltonian:

2

p
H=H(r,p:,pr,w), w?=p3+ Z .
sin© @

= Constants of motion:
o Energy € = p;:
81H =0 = 0= ,bt-
o Angular momentum £ = py:
OpH=0 = 0=p,.

= Angular equations of motion solved by equatorial motion ¢ = 7, py = O:

OH 1 . OH1 cos

“owwP P o wande™e
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General linear modified dispersion relation

o Consider linear perturbation of metric dispersion relation:

1
H(x,p) = Eg'w(x)pupv +eh(x,p).
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General linear modified dispersion relation

o Consider linear perturbation of metric dispersion relation:

1
H(x,p) = Eg'w(x)pupu +eh(x,p).

e Impose spherical symmetry:

1 w?
Hxp) = 5 (-atr)ef + b+ %5 )« chir, prprw).
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General linear modified dispersion relation

o Consider linear perturbation of metric dispersion relation:

1
H(x,p) = Eg'w(x)pupu +eh(x,p).

e Impose spherical symmetry:

1 w?
Hxp) = 5 (-atr)ef + b+ %5 )« chir, prprw).

e General relativity in vacuum implies Schwarzschild spacetime:
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r-Poincaré dispersion relation

» General form with Planck length ¢ and vector field Z* satisfying g,.,Z*Z" = -1

2 (! 2 1 .
H(x.p) = =g sinh (5.2 (0P, ) + 50209 [¢ ()pp, + (2 (X)P,)?]
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r-Poincaré dispersion relation

» General form with Planck length ¢ and vector field Z* satisfying g,.,Z*Z" = -1

2 ¢ w 21 LZH(X)Pu [ gHv w 2
H(x.p) = =g sinh (5.2 (0P, ) + 50209 [¢ ()pp, + (2 (X)P,)?]

o Impose spherical symmetry:

2
H(x,p) = - 5 sinh | 5 (e(Mpi+ d(r)p)]

ez(c(r)p,+d(r)p,)

A —-— [(—a(r) - C2(r))pf + 20(r)d(P)prpr-+ (b(r) + (1)) + 2
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r-Poincaré dispersion relation

» General form with Planck length ¢ and vector field Z* satisfying g,.,Z*Z" = -1

2 ¢ w 21 LZH(X)Pu [ gHv w 2
H(x.p) = =g sinh (5.2 (0P, ) + 50209 [¢ ()pp, + (2 (X)P,)?]

o Impose spherical symmetry:

2
H(x,p) = - 5 sinh | 5 (e(Mpi+ d(r)p)]

ez(c(r)p,+d(r)p,) 5 o 5 5 W2
§— [(—a(r) + CP(1)pF +20(N)d(r)prpr + (b(r) + P (N)pf +
e Condition on vector field:
_C_2 + d_2 — _1
a b
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r-Poincaré dispersion relation

General form with Planck length ¢ and vector field Z* satisfying g,.,Z"*Z" = -1:

2 ¢ w 21 LZH(X)Pu [ gHv w 2
H(x.p) = =g sinh (5.2 (0P, ) + 50209 [¢ ()pp, + (2 (X)P,)?]

Impose spherical symmetry:

2
H(x,p) = - 5 sinh | 5 (e(Mpi+ d(r)p)]

ez(c(r)p,+d(r)p,) 5 o 5 5 W2
§— [(—a(r) + CP(1)pF +20(N)d(r)prpr + (b(r) + P (N)pf +
e Condition on vector field:
_C_2 + d_2 — _1
a b

Possible choice: ¢ =/a, d = 0.
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e Circular photon orbits

Manuel Hohmann (University of Observables from spherically symmetric MDR -Tuorla - 6. May 2022 9/20



General solution method

o Circular orbits defined by constant radial coordinate:

0=r=0"H(r,E,pr,L).

Manuel Hohmann (University of Tartu) Observables from spherically symmetric MDR Tartu-Tuorla - 6. May 2022 10/20



General solution method

o Circular orbits defined by constant radial coordinate:
0=r=0"H(r,E,pr,L).

= Solve equation for p, in terms of other constants r, &, L.
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General solution method

o Circular orbits defined by constant radial coordinate:
0=r=0"H(r,E,pr,L).

= Solve equation for p, in terms of other constants r, &, L.
e Solve massless dispersion relation for photon energy &:

H(r,E,pr,£)=0.
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General solution method

o Circular orbits defined by constant radial coordinate:
0=r=0"H(r,E,pr,L).

= Solve equation for p, in terms of other constants r, &, L.
e Solve massless dispersion relation for photon energy &:

H(r,E,pr,£)=0.
e Use condition that p, must be constant to determine allowed radii r:

0 :br = —8rH(I’,5,pr,£) .
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General solution method

o Circular orbits defined by constant radial coordinate:
0=r=0"H(r,E,pr,L).

= Solve equation for p, in terms of other constants r, &, L.
e Solve massless dispersion relation for photon energy &:

H(r,E,pr,£)=0.
e Use condition that p, must be constant to determine allowed radii r:
0 = br = —8rH(I’,5,pr,£) .

= Radius will in general depend on angular momentum: r = r(L).
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General solution method

o Circular orbits defined by constant radial coordinate:
0=r=0"H(r,E,pr,L).

= Solve equation for p, in terms of other constants r, &, L.
e Solve massless dispersion relation for photon energy &:

H(r,E,pr,£)=0.
e Use condition that p, must be constant to determine allowed radii r:
0 = br = —8rH(I’,5,pr,,C) .

= Radius will in general depend on angular momentum: r = r(L).
= Photon orbit radius determines “shadow” = observable signature.
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General linear modified dispersion relation

o Express photon orbit radius as perturbation: r = ry + €ry.
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General linear modified dispersion relation

o Express photon orbit radius as perturbation: r = ry + €ry.
e Photon orbit for general spherically symmetric background:
o Background value independent of photon momentum:

o First order correction depends on photon momentum:
_ 2r5"(a§8,h0 - aoa{)ho)
L2(r2agay - r2a? - 2napay - 6a2)

ry
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General linear modified dispersion relation

o Express photon orbit radius as perturbation: r = ry + €ry.
e Photon orbit for general spherically symmetric background:
o Background value independent of photon momentum:

o First order correction depends on photon momentum:
r = 2[’3’(3%3,/70 - aoa{)ho) .
L2(r2agay - r2a? - 2napay - 6a2)

e Consider Schwarzschild background:
o Background value independent of photon momentum:

= §r

0= ) S-
o First order correction depends on photon momentum:
9r8
16.L2

= (4h0 + 3"58,/70) .
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r-Poincaré dispersion relation

e Photon orbits determined from transcendental equation:

2L ?E,In(—r )—
re0f fta \r+iL) "
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r-Poincaré dispersion relation

e Photon orbits determined from transcendental equation:

2L ra ( r )
F—Inl——=] =
r+fL fa r+lL

o Perturbative expansion r = ry + £ry:

Tartu-Tuorla - 6. May 2022
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r-Poincaré dispersion relation

e Photon orbits determined from transcendental equation:

2L ra’ ( r )
F—Inl——=] =
r+fL fa r+t.

o Perturbative expansion r = ry + £ry:

ap L
rh=-2— =—.
0 a, , N 6
e Consider Schwarzschild background:
3
I'o = Ers .
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r-Poincaré dispersion relation

e Photon orbits determined from transcendental equation:

2L ra’ ( r )
F—Inl——=] =
r+lL Ya r+iL

o Perturbative expansion r = ry + £ry:

ap L
= —2— = —,
o a’ n 6
e Consider Schwarzschild background:
3
I'o = Ers .

= Momentum-dependent modification of order ~ /L.
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e Shapiro delay
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General solution method

e Model Shapiro delay with radar experiment:

Signal emitted at radial coordinate r = re.

Point of closest approach at r = r..

Signal reflected at mirror at r = rp,.

Signal takes same path back to detector again at r = re.

O O O o
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General solution method

e Model Shapiro delay with radar experiment:

Signal emitted at radial coordinate r = re.

Point of closest approach at r = r..

Signal reflected at mirror at r = rp,.

Signal takes same path back to detector again at r = re.

 Total signal travel time:
ﬁ drdrr>0 fm drdr

At—fe dr

O O O o

re dt
+ dr —
r<0 e dr

r>0
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General solution method

e Model Shapiro delay with radar experiment:

Signal emitted at radial coordinate r = re.

Point of closest approach at r = r..

Signal reflected at mirror at r = rp,.

Signal takes same path back to detector again at r = re.

 Total signal travel time:
ﬁ drdrr>0 fm drdr

At—fe dr

e Use ratio of four-velocity components:

O O O o

re dt
+ dr —
r<0 e dr

r>0

dt

ar _t
dr 1’
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General solution method

e Model Shapiro delay with radar experiment:

Signal emitted at radial coordinate r = re.

Point of closest approach at r = r..

Signal reflected at mirror at r = rp,.

Signal takes same path back to detector again at r = re.

 Total signal travel time:

e
At = f dr %
e

e Use ratio of four-velocity components:

[e]

O O O

I'm dt
dr —
r<0 re dar

re dt
dr —
>0 I'm dr

le dt
dr —
r<0 re dr

r>0

@ i
dr 1’

» Pay attention to divergence r = 0 at point r = r¢ of closest approach!
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General linear modified dispersion relation

o Use condition r = 0 to determine closest approach r:

O = i'|rc = b(rc)pr + Ea_rh(rc,g,pr,ﬁ) .
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General linear modified dispersion relation

o Use condition r = 0 to determine closest approach r:
0 = i'|rc = b(rc)pr + Ga_rh(rc, g,pr, E) .

= Solve for p, at r=rg.
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General linear modified dispersion relation

o Use condition r = 0 to determine closest approach r:
0 = i'|rc = b(rc)pr + Ga_rh(rc, g,pr, E) .

= Solve for p, at r=rg.
= Use pr|,, in massless dispersion relation to relate r;, &, L.
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General linear modified dispersion relation

o Use condition r = 0 to determine closest approach r:
0 = i'|rc = b(rc)pr + Ga_rh(rc, g,pr, E) .

= Solve for p, at r=rg.
= Use pr|,, in massless dispersion relation to relate r;, &, L.
o Massless dispersion relation:

2
0=H(r,& prL)= % (—a(r)82 +b(r)p? + f—z) +eh(r,&,pr, L).
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General linear modified dispersion relation

o Use condition r = 0 to determine closest approach r:

0 = i'|rc = b(rc)pr + Ga_rh(rc,g,pr,ﬁ) .

= Solve for p, at r=rg.

= Use pr|,, in massless dispersion relation to relate r;, &, L.
o Massless dispersion relation:

2
0=H(r,& prL)= ; ( a(r)&2 + b(r)p? + £ )+eh(r E.prL).

= Solve for pr|;»o along photon trajectory.
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General linear modified dispersion relation

o Use condition r = 0 to determine closest approach r:
O = i'|rc = b(rc)pr + Ga_rh(rc, g,pr, £) .

= Solve for p, at r=rg.
= Use pr|,, in massless dispersion relation to relate r;, &, L.
o Massless dispersion relation:

2
0=H(r,& prL)= ; ( a(r)&2 + b(r)p? + £ )+eh(r E.prL).

= Solve for pr|;»o along photon trajectory.
e tand f as functions of r and constant parameters:

dt  a(r)¢
a——b(r)pr+e(...).
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r-Poincaré dispersion relation

o Use condition r = 0 to determine closest approach re:

0 = i’|rc = eeg Y a(rc)prb(rc) .
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r-Poincaré dispersion relation

o Use condition r = 0 to determine closest approach re:
0 = i’|rc = eeg Y a(rc)prb(rc) .

= Findp,=0atr=re.
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r-Poincaré dispersion relation

o Use condition r = 0 to determine closest approach re:
0 = i’|rc = eég Y a(rc)prb(rc) .

= Findp,=0atr=re.
e Use pr|r, = 0 in massless dispersion relation to relate r, &, L:

0= H(rs,€,0,L) - 2r e/EV/alr) _ smh(éé’\/a(rc)).

c
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r-Poincaré dispersion relation

o Use condition r = 0 to determine closest approach re:
0 = i’|rc = ezg Y a(rc)prb(rc) .
= Findp,=0atr=re.

e Use pr|r, = 0 in massless dispersion relation to relate r, &, L:

0= H(rs,€,0,L) - 2r e/EV/alr) _ smh(éé’\/a(rc)).

c

* Solve for prl;»o along photon trajectory.
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r-Poincaré dispersion relation

o Use condition r = 0 to determine closest approach re:
0 = i’|rc = ezg Y a(rc)prb(rc) .

= Findp,=0atr=re.
e Use pr|r, = 0 in massless dispersion relation to relate r, &, L:

0= H(rs,€,0,L) - 2r e/EV/alr) _ smh(gé’\/a(rc)).

c

* Solve for prl;»o along photon trajectory.
« tand r as functions of r and constant parameters:

g__a(r)g +£Va(r)(p 2523()+ L2 )+€2(...).

dr = b(np " 2pr b(r) * 72b(r)
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e Light deflection
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General solution method

e Light deflection experiment:
o Incoming light ray from “infinity” r - oc.
o Point of closest approach at r = r..
o Observer observes light ray at “infinity” r - oc.
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General solution method

e Light deflection experiment:
o Incoming light ray from “infinity” r - oc.
o Point of closest approach at r = r..
o Observer observes light ray at “infinity” r - oc.

« Total change of angular coordinate:

_ (g9 > qr 99
Aqﬁ_[oodrdr dr

r<0 re dr

r>0
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General solution method

e Light deflection experiment:
o Incoming light ray from “infinity” r - oc.
o Point of closest approach at r = r..
o Observer observes light ray at “infinity” r - oc.

« Total change of angular coordinate:
re d¢
Ad = [ Car

e Use ratio of four-velocity components:

dr ——
r<0 re ! dr

r>0

dp ¢
dr r’
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General solution method

e Light deflection experiment:
o Incoming light ray from “infinity” r - oc.
o Point of closest approach at r = r..
o Observer observes light ray at “infinity” r - oc.

« Total change of angular coordinate:
re d¢
Ad = [ Car

e Use ratio of four-velocity components:

dr ——
r<0 re ! dr

r>0

do _¢

dr 1’

o Pay attention to divergence r = 0 at point r = r. of closest approach!
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General solution method

e Light deflection experiment:
o Incoming light ray from “infinity” r - oc.
o Point of closest approach at r = r..
o Observer observes light ray at “infinity” r - oc.

Total change of angular coordinate:
re d¢
Ad = [ Car

Use ratio of four-velocity components:

dr ——
r<0 re ! dr

r>0

do _¢

dr 1’

Pay attention to divergence r = 0 at point r = r of closest approach!
Deflection angle given by A¢ — .
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General solution method

e Light deflection experiment:
o Incoming light ray from “infinity” r - oc.
o Point of closest approach at r = r;.
o Observer observes light ray at “infinity” r - oco.

Total change of angular coordinate:
re d¢
A¢ = f dr —
¢ —o00 dr

Use ratio of four-velocity components:

do & L

dr =2
P00 Jre ! dr

>0

dr r  pr2b(r)

Pay attention to divergence r = 0 at point r = r. of closest approach!
Deflection angle given by A¢ — .
Possible to use p, and relation between r¢, £, L from Shapiro delay.

Manuel Hohmann (University of Tartu) Observables from spherically symmetric MDR Tartu-Tuorla - 6. May 2022



Outline

e Conclusion

Manuel Hohmann (University of Observables from spherically symmetric MDR -Tuorla - 6. May 2022 19/20



Conclusion

» Modified dispersion relations motivated from phenomenological approach:
o Quantum corrections to general relativity.
o Modified gravity theories to address open questions in cosmology.
o Matter coupling and propagation in media.
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Conclusion

» Modified dispersion relations motivated from phenomenological approach:
o Quantum corrections to general relativity.
o Modified gravity theories to address open questions in cosmology.
o Matter coupling and propagation in media.
o Examples of spherically symmetric dispersion relations:
o General linear perturbation of metric dispersion relation.
o k-Poincaré dispersion relation.
» Consider several observable effects:

o Circular photon orbits and “shadow” = “rainbow”.
o Shapiro time delay of deflected signals = “chirp”.
o Deflection angle and gravitational lensing = “rainbow”.

= Characteristic signature of momentum-dependent observables.

How to find observable effects from modified dispersion relations?

Somewhere over the rainbow way up high. ..
...there’s an energy scale where dispersion becomes modified.
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