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Why study modified dispersion relations?

● Observations in astronomy and cosmology rely on “messengers”:
○ Photons - wide energy range from radio to gamma.
○ Other particles (predominantly protons and neutrinos).
○ Gravitational waves.

● Propagation of messengers governed by dispersion relation.
● Most common dispersion relation derived from general relativity.
● Reasons to study modified dispersion relations (MDR):

○ Interacting matter halos around astrophysical sources.
○ Quantum gravity phenomenology and spacetime substructure.
○ Modified theories of gravity and extra fields.

● Effects on messenger propagation by spherical sources:
○ Circular orbits and “shadows” of compact objects.
○ Shapiro time delay.
○ Deflection angles and gravitational lensing.

● MDR may in general introduce energy-dependence of these effects.
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Dispersion relations as Hamiltonians

● Hamiltonian picture of point mass dynamics:
○ Describe particle motion in position-momentum variables (xµ,pµ).
○ Variables are coordinates on the cotangent bundle T ∗M of spacetime M.
○ Introduce abbreviations:

∂µ =
∂

∂xµ
, ∂̄µ = ∂

∂pµ
.

● Dynamics governed by Hamiltonian H(x ,p):
○ Dispersion relation defines “mass shell” of point mass:

H(x ,p) = −m2

2
.

○ Hamiltonian equations of motion:

ṗµ = −∂µH , ẋµ = ∂̄µH .

○ Mass m is constant of motion⇒ motion confined to mass shell.
● Point mass Hamiltonian in general relativity:

○ Metric gµν(x) defines H(x ,p) = 1
2 gµν(x)pµpν .

⇒ Equations of motion give geodesic equation.
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Static spherically symmetric modified dispersion relations

● Introduce spherical position-momentum variables:

(xµ) = (t , r , θ, φ) , (pµ) = (pt ,pr ,pθ,pφ) .

● Consider static, spherically symmetric Hamiltonian:

H = H(r ,pt ,pr ,w) , w2 = p2
θ +

p2
φ

sin2 θ
.

⇒ Constants of motion:
○ Energy E = pt :

∂tH = 0 ⇒ 0 = ṗt .

○ Angular momentum L = pφ:
∂φH = 0 ⇒ 0 = ṗφ .

⇒ Angular equations of motion solved by equatorial motion θ = π
2 , pθ = 0:

θ̇ = ∂H
∂w

1
w

pθ , ṗθ =
∂H
∂w

1
w

cos θ

sin3 θ
p2
φ .
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General linear modified dispersion relation

● Consider linear perturbation of metric dispersion relation:

H(x ,p) = 1
2

gµν(x)pµpν + εh(x ,p) .

● Impose spherical symmetry:

H(x ,p) = 1
2
(−a(r)p2

t + b(r)p2
r +

w2

r2 ) + εh(r ,pt ,pr ,w) .

● General relativity in vacuum implies Schwarzschild spacetime:

b = a−1 = 1 − rs

r
.
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κ-Poincaré dispersion relation

● General form with Planck length ` and vector field Zµ satisfying gµνZµZ ν = −1:

H(x ,p) = − 2
`2

sinh( `
2

Zµ(x)pµ)
2
+ 1

2
e`Z

µ(x)pµ [gµν(x)pµpν + (Zµ(x)pµ)2] .

● Impose spherical symmetry:

H(x ,p) = − 2
`2

sinh [ `
2
(c(r)pt + d(r)pr)]

2

+ e`(c(r)pt+d(r)pr )

2
[(−a(r) + c2(r))p2

t + 2c(r)d(r)pr pt + (b(r) + d2(r))p2
r +

w2

r2 ] .

● Condition on vector field:

−c2

a
+ d2

b
= −1 .

● Possible choice: c =
√

a, d = 0.
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General solution method

● Circular orbits defined by constant radial coordinate:

0 = ṙ = ∂̄r H(r ,E ,pr ,L) .

⇒ Solve equation for pr in terms of other constants r ,E ,L.
● Solve massless dispersion relation for photon energy E :

H(r ,E ,pr ,L) = 0 .

● Use condition that pr must be constant to determine allowed radii r :

0 = ṗr = −∂r H(r ,E ,pr ,L) .

⇒ Radius will in general depend on angular momentum: r = r(L).
⇒ Photon orbit radius determines “shadow”⇒ observable signature.
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General linear modified dispersion relation

● Express photon orbit radius as perturbation: r = r0 + εr1.

● Photon orbit for general spherically symmetric background:
○ Background value independent of photon momentum:

r0 = −2
a0

a′0
.

○ First order correction depends on photon momentum:

r1 =
2r4

0 (a2
0∂r h0 − a0a′0h0)

L2
0 (r2

0 a0a′′0 − r2
0 a′20 − 2r0a0a′0 − 6a2

0)
.

● Consider Schwarzschild background:
○ Background value independent of photon momentum:

r0 =
3
2

rs .

○ First order correction depends on photon momentum:

r1 =
9r3

s

16L2
0
(4h0 + 3rs∂r h0) .
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κ-Poincaré dispersion relation

● Photon orbits determined from transcendental equation:

2L
r ± `L ∓

ra′

`a
ln( r

r ± `L) = 0 .

● Perturbative expansion r = r0 + `r1:

r0 = −2
a0

a′0
, r1 =

L
6
.

● Consider Schwarzschild background:

r0 =
3
2

rs .

⇒ Momentum-dependent modification of order ∼ `L.
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General solution method

● Model Shapiro delay with radar experiment:
○ Signal emitted at radial coordinate r = re.
○ Point of closest approach at r = rc .
○ Signal reflected at mirror at r = rm.
○ Signal takes same path back to detector again at r = re.

● Total signal travel time:

∆t = ∫
rc

re
dr

dt
dr

∣
ṙ<0

+ ∫
rm

rc
dr

dt
dr

∣
ṙ>0

+ ∫
rc

rm
dr

dt
dr

∣
ṙ<0

+ ∫
re

rc
dr

dt
dr

∣
ṙ>0

.

● Use ratio of four-velocity components:

dt
dr
= ṫ

ṙ
.

● Pay attention to divergence ṙ = 0 at point r = rc of closest approach!
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ṙ<0

+ ∫
rm

rc
dr

dt
dr

∣
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General linear modified dispersion relation

● Use condition ṙ = 0 to determine closest approach rc :

0 = ṙ ∣rc = b(rc)pr + ε∂̄r h(rc ,E ,pr ,L) .

⇒ Solve for pr at r = rc .
⇒ Use pr ∣rc in massless dispersion relation to relate rc ,E ,L.
● Massless dispersion relation:

0 = H(r ,E ,pr ,L) =
1
2
(−a(r)E2 + b(r)p2

r +
L2

r2 ) + εh(r ,E ,pr ,L) .

⇒ Solve for pr ∣ṙ≷0 along photon trajectory.

● ṫ and ṙ as functions of r and constant parameters:

dt
dr
= − a(r)E

b(r)pr
+ ε(. . .) .
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κ-Poincaré dispersion relation

● Use condition ṙ = 0 to determine closest approach rc :

0 = ṙ ∣rc = e`E
√

a(rc)pr b(rc) .

⇒ Find pr = 0 at r = rc .
● Use pr ∣rc = 0 in massless dispersion relation to relate rc ,E ,L:

0 =H(rc ,E ,0,L) =
L2

2r2
c

e`E
√

a(rc) − 2
`2

sinh( `
2
E
√

a(rc)) .

● Solve for pr ∣ṙ≷0 along photon trajectory.

● ṫ and ṙ as functions of r and constant parameters:

dt
dr
= − a(r)E

b(r)pr
+ `

√
a(r)
2pr

(p2
r + 2E2 a(r)

b(r) +
L2

r2b(r)) + `
2(. . .) .
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● ṫ and ṙ as functions of r and constant parameters:

dt
dr
= − a(r)E

b(r)pr
+ `

√
a(r)
2pr

(p2
r + 2E2 a(r)

b(r) +
L2

r2b(r)) + `
2(. . .) .

Manuel Hohmann (University of Tartu) Observables from spherically symmetric MDR Tartu-Tuorla - 6. May 2022 16 / 20



Outline

1 Spherically symmetric modified dispersion relations

2 Circular photon orbits

3 Shapiro delay

4 Light deflection

5 Conclusion

Manuel Hohmann (University of Tartu) Observables from spherically symmetric MDR Tartu-Tuorla - 6. May 2022 17 / 20



General solution method

● Light deflection experiment:
○ Incoming light ray from “infinity” r →∞.
○ Point of closest approach at r = rc .
○ Observer observes light ray at “infinity” r →∞.

● Total change of angular coordinate:

∆φ = ∫
rc

−∞
dr

dφ
dr

∣
ṙ<0

+ ∫
∞

rc
dr

dφ
dr

∣
ṙ>0

.

● Use ratio of four-velocity components:

dφ
dr
= φ̇

ṙ
.

● Pay attention to divergence ṙ = 0 at point r = rc of closest approach!
● Deflection angle given by ∆φ − π.
● Possible to use pr and relation between rc ,E ,L from Shapiro delay.
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ṙ<0

+ ∫
∞

rc
dr

dφ
dr

∣
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Conclusion

● Modified dispersion relations motivated from phenomenological approach:
○ Quantum corrections to general relativity.
○ Modified gravity theories to address open questions in cosmology.
○ Matter coupling and propagation in media.

● Examples of spherically symmetric dispersion relations:
○ General linear perturbation of metric dispersion relation.
○ κ-Poincaré dispersion relation.

● Consider several observable effects:
○ Circular photon orbits and “shadow”⇒ “rainbow”.
○ Shapiro time delay of deflected signals⇒ “chirp”.
○ Deflection angle and gravitational lensing⇒ “rainbow”.

⇒ Characteristic signature of momentum-dependent observables.

How to find observable effects from modified dispersion relations?
Somewhere over the rainbow way up high. . .

. . . there’s an energy scale where dispersion becomes modified.
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