Observer space geometry Introduction to Finsler and Cartan geometries

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "Fundamental Universe"

Oberseminar Analysis/Numerik, Universität Oldenburg October 30, 2025

Outline

1. Introduction

- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations
- ⇒ Possible stronger, non-tensorial dependence of physical quantities on observer's motion.

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations
- ⇒ Possible stronger, non-tensorial dependence of physical quantities on observer's motion.
- ⇒ More general, non-tensorial, "observer dependent" geometries:
 - Finsler spacetimes
 - Cartan geometry on observer space

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations
- ⇒ Possible stronger, non-tensorial dependence of physical quantities on observer's motion.
- ⇒ More general, non-tensorial, "observer dependent" geometries:
 - Finsler spacetimes
 - Cartan geometry on observer space
 - How to serve the same roles as pseudo-Riemannian geometry?

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - o Electrodynamics in anisotropic media
 - Modeling of astronomical data

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport. . .

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport...
- Finsler spacetimes are suitable backgrounds for:
 - Gravity
 - Electrodynamics
 - Fluid dynamics / kinetic gases
 - Other matter field theories

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport. . .
- Finsler spacetimes are suitable backgrounds for:
 - Gravity
 - Electrodynamics
 - Fluid dynamics / kinetic gases
 - Other matter field theories
- ? Possible explanations of yet unexplained phenomena:
 - ? Galaxy rotation curves
 - ? Accelerating expansion of the universe

- Quantum gravity suggests breaking of...
 - … local Lorentz invariance.
 - ...general covariance.

- Quantum gravity suggests breaking of...
 - … local Lorentz invariance.
 - ...general covariance.
- Possible breaking of symmetry through...
 - ... preferred observers / timelike vector fields.
 - ... preferred spatial foliations of spacetime.

- Quantum gravity suggests breaking of...
 - ...local Lorentz invariance.
 - ...general covariance.
- Possible breaking of symmetry through...
 - o ... preferred observers / timelike vector fields.
 - ... preferred spatial foliations of spacetime.
- Problems:
 - Breaking of Copernican principle for observers.
 - No observation of (strongly) broken symmetry.

- Quantum gravity suggests breaking of...
 - ...local Lorentz invariance.
 - ...general covariance.
- Possible breaking of symmetry through...
 - ...preferred observers / timelike vector fields.
 - ...preferred spatial foliations of spacetime.
- Problems:
 - Breaking of Copernican principle for observers.
 - No observation of (strongly) broken symmetry.
- Solution:
 - Consider space O of all allowed observers.
 - Describe experiments on observer space instead of spacetime.
 - ⇒ Observer dependence of physical quantities follows naturally.
 - ⇒ No preferred observers.
 - Geometry of observer space modeled by Cartan geometry.

Outline

- 1. Introduction
- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

Outline

- 1. Introduction
- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
 - 4-dimensional spacetime manifold *M*.
 - Metric g_{ab} of Lorentzian signature (-,+,+,+).
 - Orientation and time orientation of frames.

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
 - 4-dimensional spacetime manifold *M*.
 - Metric g_{ab} of Lorentzian signature (-,+,+,+).
 - Orientation and time orientation of frames.
- Clock postulate: proper time measured by arc length.
- \Rightarrow Arc length for curves $t \mapsto \gamma(t) \in M$ defined by the metric:

$$au_2 - au_1 = \int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$
.

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
 - 4-dimensional spacetime manifold *M*.
 - Metric g_{ab} of Lorentzian signature (-,+,+,+).
 - Orientation and time orientation of frames.
- Clock postulate: proper time measured by arc length.
- \Rightarrow Arc length for curves $t \mapsto \gamma(t) \in M$ defined by the metric:

$$au_2 - au_1 = \int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$
 .

- Observables are components of tensor fields.
- Tensor components must be expressed in suitable basis.
- ⇒ Metric provides notion of orthonormal frames:

$$g_{ab}f_i^af_i^b=\eta_{ij}$$
 .

 \Rightarrow Orthogonal frame bundle $\tilde{\pi}: P \to M$ is principal SO(1,3)-bundle.

Outline

1. Introduction

- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

Basics of Finsler spacetimes

• Finsler geometry defined by length functional for curve γ :

$$au_2 - au_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

- Finsler function $F: TM \to \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]

Basics of Finsler spacetimes

• Finsler geometry defined by length functional for curve γ :

$$au_2 - au_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

- Finsler function $F: TM \to \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- Introduce manifold-induced coordinates (x^a, y^a) on TM:
 - Coordinates x^a on M.
 - Define coordinates y^a for $y^a \frac{\partial}{\partial x^a} \in T_x M$.
 - Tangent bundle *TTM* spanned by $\left\{\partial_a = \frac{\partial}{\partial x^a}, \bar{\partial}_a = \frac{\partial}{\partial y^a}\right\}$.

Basics of Finsler spacetimes

• Finsler geometry defined by length functional for curve γ :

$$au_2 - au_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

- Finsler function $F: TM \to \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- Introduce manifold-induced coordinates (x^a, y^a) on TM:
 - Coordinates x^a on M.
 - Define coordinates y^a for $y^a \frac{\partial}{\partial x^a} \in T_x M$.
 - Tangent bundle *TTM* spanned by $\left\{\partial_a = \frac{\partial}{\partial x^a}, \bar{\partial}_a = \frac{\partial}{\partial y^a}\right\}$.
- *n*-homogeneous functions on *TM*: $f(x, \lambda y) = \lambda^n f(x, y)$.
 - *n*-homogeneous smooth geometry function $L: TM \to \mathbb{R}$.
 - \Rightarrow 1-homogeneous Finsler function $F = |L|^{\frac{1}{n}}$.
- ⇒ Finsler metric with Lorentz signature:

$$g_{ab}^F(x,y) = \frac{1}{2}\bar{\partial}_a\bar{\partial}_bF^2(x,y).$$

Connections on Finsler spacetimes

Cartan non-linear connection:

$$N^a{}_b = rac{1}{4} ar{\partial}_b \left[g^F{}^{ac} (y^d \partial_d ar{\partial}_c F^2 - \partial_c F^2)
ight] \, .$$

⇒ Berwald basis of TTM:

$$\{\delta_a = \partial_a - N^b{}_a \bar{\partial}_b, \bar{\partial}_a\}$$
.

 \Rightarrow Dual Berwald basis of T^*TM :

$$\{dx^a, \delta y^a = dy^a + N^a{}_b dx^b\}.$$

 \Rightarrow Splits $TTM = HTM \oplus VTM$ and $T^*TM = H^*TM \oplus V^*TM$.

Connections on Finsler spacetimes

Cartan non-linear connection:

$$N^a{}_b = rac{1}{4} ar{\partial}_b \left[g^F{}^{ac} (y^d \partial_d ar{\partial}_c F^2 - \partial_c F^2)
ight] \, .$$

⇒ Berwald basis of TTM:

$$\{\delta_a = \partial_a - N^b{}_a \bar{\partial}_b, \bar{\partial}_a\}$$
.

 \Rightarrow Dual Berwald basis of T^*TM :

$$\{dx^a, \delta y^a = dy^a + N^a{}_b dx^b\}.$$

- \Rightarrow Splits $TTM = HTM \oplus VTM$ and $T^*TM = H^*TM \oplus V^*TM$.
- Cartan linear connection:

$$egin{aligned}
abla_{\delta_a}\delta_b &= \emph{\emph{F}}^c{}_{ab}\delta_c\,,\;
abla_{\delta_a}ar{\partial}_b &= \emph{\emph{F}}^c{}_{ab}ar{\partial}_c\,,\;
abla_{ar{\partial}_a}\delta_b &= \emph{\emph{C}}^c{}_{ab}\delta_c\,,\;
abla_{ar{\partial}_a}ar{\partial}_b &= \emph{\emph{C}}^c{}_{ab}ar{\partial}_c\,, \end{aligned} \
onumber \ F^c{}_{ab} &= rac{1}{2}\emph{\emph{g}}^{\emph{\emph{F}}\,cd}(\delta_a\emph{\emph{\emph{g}}}_{bd}^\emph{\emph{\emph{F}}} + \delta_b\emph{\emph{\emph{g}}}_{ad}^\emph{\emph{\emph{F}}} - \delta_d\emph{\emph{\emph{\emph{g}}}}_{ab}^\emph{\emph{\emph{F}}})\,, \end{aligned} \
onumber \ C^c{}_{ab} &= rac{1}{2}\emph{\emph{\emph{\emph{g}}}}^{\emph{\emph{F}}\,cd}(ar{\partial}_a\emph{\emph{\emph{\emph{g}}}}_{bd}^\emph{\emph{\emph{F}}} + ar{\partial}_b\emph{\emph{\emph{g}}}_{ad}^\emph{\emph{\emph{F}}} - ar{\partial}_d\emph{\emph{\emph{\emph{g}}}}_{ab}^\emph{\emph{\emph{\emph{F}}}})\,. \end{aligned}$$

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \to M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.

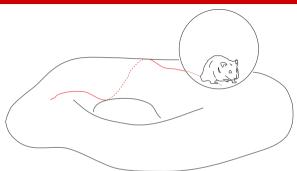
- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \to M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - 2. A is H-equivariant: $(R_h)^*A = Ad(h^{-1}) \circ A$ for all $h \in H$.
 - 3. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \to M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - 2. A is H-equivariant: $(R_h)^*A = Ad(h^{-1}) \circ A$ for all $h \in H$.
 - 3. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.
- ⇒ Dimensions of Cartan and Klein geometry are related:
 - o Dimension of the fibers: $\dim P \dim M = \dim H$.

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \to M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - 2. A is H-equivariant: $(R_h)^*A = \operatorname{Ad}(h^{-1}) \circ A$ for all $h \in H$.
 - 3. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.
- ⇒ Dimensions of Cartan and Klein geometry are related:
 - Dimension of the fibers: $\dim P \dim M = \dim H$.
 - Dimension of the total space: $\dim P = \dim G$.

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \to M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - 2. A is H-equivariant: $(R_h)^*A = \operatorname{Ad}(h^{-1}) \circ A$ for all $h \in H$.
 - 3. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.
- ⇒ Dimensions of Cartan and Klein geometry are related:
 - Dimension of the fibers: $\dim P \dim M = \dim H$.
 - Dimension of the total space: $\dim P = \dim G$.
 - \Rightarrow Dimension of the base manifold: dim $M = \dim G \dim H = \dim G/H$.

Toy model for Cartan geometry: The hamster ball



- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi: P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.

Toy model for Cartan geometry: The hamster ball

- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi: P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom ∈ T_pP:
 - Rotations around its position $x = \pi(p)$.
 - "Rolling without slippling" over M.

Toy model for Cartan geometry: The hamster ball

- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi: P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom $\in T_pP \sim \text{ball motions} \in \mathfrak{g} = \mathfrak{so}(3)$:
 - Rotations around its position $x = \pi(p)$: subalgebra $\mathfrak{h} = \mathfrak{so}(2)$.
 - "Rolling without slippling" over M: quotient space $\mathfrak{z} = \mathfrak{so}(3)/\mathfrak{so}(2)$.

Toy model for Cartan geometry: The hamster ball



- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi: P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom $\in T_pP \sim \text{ball motions} \in \mathfrak{g} = \mathfrak{so}(3)$:
 - Rotations around its position $x = \pi(p)$: subalgebra $\mathfrak{h} = \mathfrak{so}(2)$.
 - "Rolling without slippling" over *M*: quotient space $\mathfrak{z} = \mathfrak{so}(3)/\mathfrak{so}(2)$.

Klein geometries for spacetime and observer space

- Consider groups $G \supset H \supset K$:
 - "Inhomogeneous group" symmetry group of homogeneous space:

$$G_{\Lambda} = egin{cases} {\sf SO}_0(4,1) & \Lambda = 1 \ {\sf ISO}_0(3,1) & \Lambda = 0 \ {\sf SO}_0(3,2) & \Lambda = -1 \end{cases} .$$

- "Homogeneous group" $H = SO_0(3, 1)$ stabilizer of a point.
- "Observer group" K = SO(3) stabilizer of a tangent vector.

Klein geometries for spacetime and observer space

- Consider groups $G \supset H \supset K$:
 - "Inhomogeneous group" symmetry group of homogeneous space:

$$G_{\Lambda} = egin{cases} {\sf SO}_0(4,1) & \Lambda = 1 \ {\sf ISO}_0(3,1) & \Lambda = 0 \ {\sf SO}_0(3,2) & \Lambda = -1 \end{cases} .$$

- "Homogeneous group" $H = SO_0(3, 1)$ stabilizer of a point.
- "Observer group" K = SO(3) stabilizer of a tangent vector.
- Induced split of Lie algebra g via Ad:
 - Irreducible representations of $H \subset G$ on \mathfrak{g} :

$$\mathfrak{g} = \underbrace{\mathfrak{h}}_{ ext{Lorentz transformations}} \oplus \underbrace{\mathfrak{z}}_{ ext{translations}}.$$

• Irreducible representations of $K \subset G$ on \mathfrak{g} :

$$\mathfrak{h} = \underbrace{\mathfrak{k}}_{\text{rotations}} \oplus \underbrace{\mathfrak{y}}_{\text{boosts}}, \quad \mathfrak{z} = \underbrace{\vec{\mathfrak{z}}}_{\text{spatial translations}} \oplus \underbrace{\mathfrak{z}^0}_{\text{temporal translations}}.$$

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \to M$.

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \to M$.
- Split of the tangent spaces T_pP :

$$T_{\rho}P = V_{\rho}P + H_{\rho}P$$

- Infinitesimal Lorentz transforms $\in V_pP$.
- Infinitesimal translations $\in H_pP$.

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \to M$ is principal H-bundle.
- Split of the tangent spaces $T_pP \cong \mathfrak{g}$:

- Infinitesimal Lorentz transforms $\in V_pP \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_pP \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:

 - Translations 3.

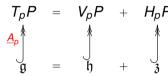
- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \to M$ is principal H-bundle.
- Split of the tangent spaces $T_pP \cong \mathfrak{g}$:

$$T_pP = V_pP + H_pP$$
 $A_p \downarrow = \omega_p \downarrow + e_p \downarrow$
 $g = h + 3$

- Infinitesimal Lorentz transforms $\in V_pP \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_pP \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:

 - Translations 3.
- Cartan connection $A = \omega + e \in \Omega^1(P, \mathfrak{g})$.

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \to M$ is principal H-bundle.
- Split of the tangent spaces $T_pP \cong \mathfrak{g}$:



- Infinitesimal Lorentz transforms $\in V_pP \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_pP \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:
 - o Lorentz algebra η.
 - Translations 3.
- Cartan connection $A = \omega + e \in \Omega^1(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A} : \mathfrak{g} \to \Gamma(TP)$ as "inverse" of A.

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \to M$ is principal H-bundle.
- Split of the tangent spaces $T_pP \cong \mathfrak{g}$:

- Infinitesimal Lorentz transforms $\in V_pP \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_pP \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:

 - Translations 3.
- Cartan connection $A = \omega + e \in \Omega^1(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A} : \mathfrak{g} \to \Gamma(TP)$ as "inverse" of A.
- \Rightarrow Geometry of *M* encoded in *A* resp. <u>A</u>.

Cartan geometry of observer space

- Consider Lorentzian manifold (*M*, *g*).
- Future unit timelike vectors O ⊂ TM.
- Orthonormal frame bundle $\pi: P \to O$.

Cartan geometry of observer space

- Consider Lorentzian manifold (*M*, *g*).
- Future unit timelike vectors O ⊂ TM.
- Orthonormal frame bundle $\pi: P \to O$ is principal K-bundle.
- Split of the tangent spaces $T_pP \cong \mathfrak{g}$:

$$T_{\rho}P = R_{\rho}P + B_{\rho}P + \vec{H}_{\rho}P + H_{\rho}^{0}P + H_{\rho}^{0}P \\
\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

- Infinitesimal rotations $\in R_pP \cong \mathfrak{k}$.
- Infinitesimal Lorentz boosts $\in B_pP \cong \mathfrak{y}$.
- Infinitesimal spatial translations $\in \vec{H}_p P \cong \vec{\jmath}$.
- Infinitesimal temporal translations $\in H^0_pP \cong \mathfrak{z}^0$.

Cartan geometry of observer space

- Consider Lorentzian manifold (M, g).
- Future unit timelike vectors O ⊂ TM.
- Orthonormal frame bundle $\pi: P \to O$ is principal K-bundle.
- Split of the tangent spaces $T_pP \cong \mathfrak{g}$:

- Infinitesimal rotations $\in R_pP \cong \mathfrak{k}$.
- Infinitesimal Lorentz boosts $\in B_pP \cong \mathfrak{y}$.
- Infinitesimal spatial translations $\in \vec{H}_p P \cong \vec{\jmath}$.
- Infinitesimal temporal translations $\in H^0_pP \cong \mathfrak{z}^0$.
- Cartan connection $A = \Omega + b + \vec{e} + e^0 \in \Omega^1(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A} : \mathfrak{g} \to \Gamma(TP)$ as "inverse" of A.
- \Rightarrow Geometry of M encoded in A resp. \underline{A} . [S. Gielen, D. Wise '12]

Outline

1. Introduction

- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

From pseudo-Riemannian to Finsler

Metric-induced 2-homogeneous geometry function:

$$L(x,y)=g_{ab}(x)y^ay^b.$$

- \Rightarrow Finsler function $F(x, y) = \sqrt{|L(x, y)|}$.
- ⇒ Finsler metric

$$g^F(x,y) = egin{cases} -g(x,y) & ext{for } y ext{ timelike,} \ g(x,y) & ext{for } y ext{ spacelike.} \end{cases}$$

From pseudo-Riemannian to Finsler

Metric-induced 2-homogeneous geometry function:

$$L(x,y)=g_{ab}(x)y^ay^b.$$

- \Rightarrow Finsler function $F(x, y) = \sqrt{|L(x, y)|}$.
- ⇒ Finsler metric

$$g^F(x,y) = egin{cases} -g(x,y) & ext{ for } y ext{ timelike,} \\ g(x,y) & ext{ for } y ext{ spacelike.} \end{cases}$$

⇒ Cartan non-linear connection:

$$N^a_b = \Gamma^a_{bc} y^c$$
.

⇒ Cartan linear connection:

$$F^{a}_{bc} = \Gamma^{a}_{bc}, \quad C^{a}_{bc} = 0.$$

From Finsler to Cartan

- Need to construct $A \in \Omega^1(P, \mathfrak{g})$.
- Recall that

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}$$
 $A = \omega + \mathfrak{g}$

• Definition of e: Use the solder form:

$$e^i = f^{-1}{}^i_a dx^a.$$

• Definition of ω : Use the *Cartan linear connection*:

$$\omega^{i}_{j} = f^{-1}{}^{i}_{a} \left[df^{a}_{j} + f^{b}_{j} \left(dx^{c} F^{a}_{bc} + (dx^{d} N^{c}_{d} + df^{c}_{0}) C^{a}_{bc} \right) \right] .$$

From Finsler to Cartan

- Need to construct $A \in \Omega^1(P, \mathfrak{g})$.
- Recall that

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{z}$$
 $A = \omega + e$

• Definition of e: Use the solder form:

$$e^i = f^{-1}{}^i_a dx^a$$
.

• Definition of ω : Use the Cartan linear connection:

$$\omega^{i}_{j} = f^{-1}{}^{i}_{a} \left[df^{a}_{j} + f^{b}_{j} \left(dx^{c} F^{a}_{bc} + (dx^{d} N^{c}_{d} + df^{c}_{0}) C^{a}_{bc} \right) \right].$$

- Let $a = z^i \mathcal{Z}_i + \frac{1}{2} h^i{}_i \mathcal{H}_i{}^j \in \mathfrak{g}$.
- Fundamental vector fields:

$$\underline{A}(a) = z^{i} f_{i}^{a} \left(\partial_{a} - f_{j}^{b} F^{c}{}_{ab} \bar{\partial}_{c}^{j} \right) + \left(h^{i}{}_{j} f_{i}^{a} - h^{i}{}_{0} f_{i}^{b} f_{j}^{c} C^{a}{}_{bc} \right) \bar{\partial}_{a}^{j}.$$

Relation between geometries

Metric geometry

Manifold M

Lorentzian metric g

Orientation

Time orientation

Finsler geometry

Tangent bundle TM

Geometry function

 $L: \textit{TM} \rightarrow \mathbb{R}$

Finsler function $F:TM \to \mathbb{R}$

Finsler metric $g^F(x, y)$

Cartan non-linear connection N^{a}_{b}

Cartan linear connection ∇

Cartan geometry

Lie group $G = ISO_0(3, 1)$

Closed subgroup

$$K = SO(3)$$

Principal K-bundle

$$\pi: P \to O$$

Cartan connection

$$A \in \Omega^1(P,\mathfrak{g})$$

Relation between geometries

Metric geometry

Lorentzian metric g

Orientation

Manifold M

Time orientation

Finsler geometry

Tangent bundle TM

Geometry function

 $\textit{L}:\textit{TM}\rightarrow\mathbb{R}$

Finsler function $F:TM \to \mathbb{R}$

Finsler metric $g^F(x, y)$

Cartan non-linear connection N^a_b

Cartan linear connection ∇

Cartan geometry

Lie group $G = ISO_0(3, 1)$

Closed subgroup

K = SO(3)

Principal K-bundle

 $\pi: P \rightarrow O$

Cartan connection

 $A \in \Omega^1(P, \mathfrak{g})$

From metric to Finsler

Coordinates (x^a) on MCoordinates (x^a, y^a) on TMDefine $L(x, y) = g_{ab}(x)y^ay^b$

From Finsler to Cartan

Space O of observer 4-velocities Space P of observer frames Define A from connection ∇

Outline

- 1. Introduction
- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

Outline

1. Introduction

- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

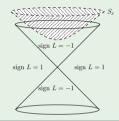
Causal structure

Metric geometry

Geometry function:

$$L = g_{ab} y^a y^b$$

 y^a timelike for L < 0.



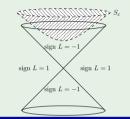
Causal structure

Metric geometry

Geometry function:

$$L = g_{ab} y^a y^b$$

 y^a timelike for L < 0.



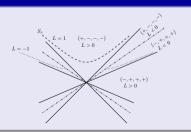
Finsler geometry

Fundamental geometry function L

Hessian:

$$g_{ab}^L(x,y) = \frac{1}{2}\bar{\partial}_a\bar{\partial}_b L(x,y)$$

Use sign of L and signature of g^L .



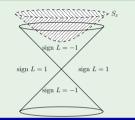
Causal structure

Metric geometry

Geometry function:

$$L=g_{ab}y^ay^b$$

 y^a timelike for L < 0.



Cartan geometry

Observer space:

$$O=\bigcup_{x\in M}S_x$$

O contains only future unit timelike vectors.

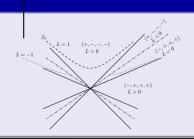
Finsler geometry

Fundamental geometry function L

Hessian:

$$g_{ab}^{L}(x,y) = \frac{1}{2}\bar{\partial}_{a}\bar{\partial}_{b}L(x,y)$$

Use sign of L and signature of g^{L} .



Causality of Finsler spacetimes

"Unit timelike condition" required for Finsler spacetimes:
 For all x ∈ M the set

$$\Omega_{X} = \left\{ y \in T_{X}M \left| |L(x,y)| = 1, \operatorname{sig} \bar{\partial}_{a} \bar{\partial}_{b} L(x,y) = (\epsilon, -\epsilon, -\epsilon, -\epsilon) \right. \right\}$$

with $\epsilon = L(x,y)/|L(x,y)|$ contains a non-empty closed connected component $S_x \subseteq \Omega_x \subset T_x M$.

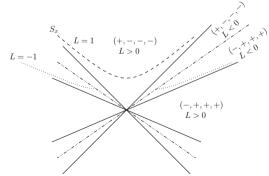
Causality of Finsler spacetimes

"Unit timelike condition" required for Finsler spacetimes:
 For all x ∈ M the set

$$\Omega_{\mathsf{X}} = \left\{ \mathsf{y} \in \mathsf{T}_{\mathsf{X}} \mathsf{M} \left| |\mathsf{L}(\mathsf{X}, \mathsf{y})| = \mathsf{1}, \operatorname{sig} \bar{\partial}_{\mathsf{a}} \bar{\partial}_{\mathsf{b}} \mathsf{L}(\mathsf{X}, \mathsf{y}) = (\epsilon, -\epsilon, -\epsilon, -\epsilon) \right. \right\}$$

with $\epsilon = L(x,y)/|L(x,y)|$ contains a non-empty closed connected component $S_x \subseteq \Omega_x \subset T_xM$.

- $\Rightarrow S_x$ contains physical observers.
- $\Rightarrow \mathbb{R}^+ S_x$ is convex cone.



The observer frame bundle

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

$$O = \bigcup_{x \in M} S_x$$
.

∘ Tangent vectors $y \in S_x$ satisfy $g_{ab}^F(x, y)y^ay^b = 1$.

The observer frame bundle

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

$$O=\bigcup_{x\in M}S_x$$
.

- ∘ Tangent vectors $y \in S_x$ satisfy $g_{ab}^F(x, y)y^ay^b = 1$.
- Construct orthonormal observer frames:
 - \Rightarrow Complete $y = f_0$ to a frame f_i with $g_{ab}^F(x, y)f_i^a f_i^b = -\eta_{ij}$.
 - Let P be the space of all observer frames.
 - \circ Natural projection $\pi: P \to O$ discards spatial frame components.

The observer frame bundle

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

$$O = \bigcup_{x \in M} S_x$$
.

- ∘ Tangent vectors $y \in S_x$ satisfy $g_{ab}^F(x, y)y^ay^b = 1$.
- Construct orthonormal observer frames:
 - \Rightarrow Complete $y = f_0$ to a frame f_i with $g_{ab}^F(x, y)f_i^a f_i^b = -\eta_{ij}$.
 - Let P be the space of all observer frames.
 - Natural projection $\pi: P \to O$ discards spatial frame components.
- Group action on the frame bundle:
 - SO(3) acts on spatial frame components by rotations.
 - Action is free and transitive on fibers of $\pi: P \to O$.
 - $\Rightarrow \pi: P \rightarrow O$ is principal *K*-bundle.

Outline

1. Introduction

- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

Observers

Metric geometry

Timelike curve γ :

$$\gamma : \mathbb{R} \to \mathbf{M} \\
\tau \mapsto \gamma(\tau)$$

$$g_{ab}\dot{\gamma}^a\dot{\gamma}^b=-1$$

Orthonormal frame *f*:

$$f_0^a = \dot{\gamma}^a$$

$$g_{ab}f_i^af_j^b=\eta_{ij}$$

Observers

Metric geometry

Timelike curve γ :

$$\gamma : \mathbb{R} \to \mathbf{M} \\
\tau \mapsto \gamma(\tau)$$

$$g_{ab}\dot{\gamma}^a\dot{\gamma}^b=-1$$

Orthonormal frame *f*:

$$f_0^a = \dot{\gamma}^a$$

$$g_{ab}f_i^af_j^b=\eta_{ij}$$

Finsler geometry

Timelike curve γ :

$$\gamma : \mathbb{R} \to \mathbf{M} \\
\tau \mapsto \gamma(\tau)$$

$$\dot{\gamma}(au) \in \mathcal{S}_{\gamma(au)} \subset \mathit{TM}$$

Canonical lift Γ:

$$\Gamma(\tau) = (\gamma(\tau), \dot{\gamma}(\tau))$$

$$\Gamma(\tau) \in \mathcal{O} \subset TM$$

Orthonormal frame f:

$$f_0^a = \dot{\gamma}^a$$

$$g_{ab}^F f_i^a f_j^b = -\eta_{ij}$$

Observers

Metric geometry

Timelike curve γ :

$$\gamma : \mathbb{R} \to \mathbf{M} \\
\tau \mapsto \gamma(\tau)$$

$$g_{ab}\dot{\gamma}^a\dot{\gamma}^b=-1$$

Orthonormal frame *f*:

$$f_0^a = \dot{\gamma}^a$$

$$g_{ab}f_i^af_i^b=\eta_{ij}$$

Finsler geometry

Timelike curve γ :

$$\begin{array}{cccc} \gamma & : & \mathbb{R} & \to & \pmb{M} \\ & \tau & \mapsto & \gamma(\tau) \end{array}$$

$$\dot{\gamma}(au) \in \mathcal{S}_{\gamma(au)} \subset \mathit{TM}$$

Canonical lift Γ:

$$\Gamma(\tau) = (\gamma(\tau), \dot{\gamma}(\tau))$$

$$\Gamma(\tau) \in \mathcal{O} \subset TM$$

Orthonormal frame f:

$$f_0^a = \dot{\gamma}^a$$

$$g_{ab}^F f_i^a f_j^b = -\eta_{ij}$$

Cartan geometry

Observer curve Γ:

$$\Gamma : \mathbb{R} \to O \\
\tau \mapsto \Gamma(\tau)$$

Lift condition:

$$\tilde{e}^i\dot{\Gamma}(au)=\delta_0^i$$

Orthonormal frame *f*:

$$f \in \pi^{-1}(\Gamma(\tau)) \subset P$$

Inertial observers

Metric geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$

Geodesic equation:

$$\ddot{\gamma}^a + \Gamma^a{}_{bc}\dot{\gamma}^b\dot{\gamma}^c = 0$$

Inertial observers

Metric geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$

Geodesic equation:

$$\ddot{\gamma}^a + \Gamma^a{}_{bc}\dot{\gamma}^b\dot{\gamma}^c = 0$$

Finsler geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

Geodesic equation:

$$\ddot{\gamma}^a + N^a{}_b \dot{\gamma}^b = 0$$

Geodesic spray:

$$\mathbf{S} = y^{a}(\partial_{a} - N^{b}{}_{a}\bar{\partial}_{b})$$

Integral curves:

$$\dot{\Gamma}(au) = \mathbf{S}(\Gamma(au))$$

Inertial observers

Metric geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$

Geodesic equation:

$$\ddot{\gamma}^a + \Gamma^a{}_{bc}\dot{\gamma}^b\dot{\gamma}^c = 0$$

Cartan geometry

Geodesic condition:

$$\tilde{b}^{lpha}\dot{\Gamma}(au)=0$$

Integral curves:

$$\dot{\Gamma}(\tau) = \underline{\tilde{e}}_0(\Gamma(\tau))$$

Finsler geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

Geodesic equation:

$$\ddot{\gamma}^a + N^a{}_b \dot{\gamma}^b = 0$$

Geodesic spray:

$$\mathbf{S} = y^a (\partial_a - N^b{}_a \bar{\partial}_b)$$

Integral curves:

$$\dot{\Gamma}(au) = \mathbf{S}(\Gamma(au))$$

Observers on metric spacetimes

- Observer trajectories:
 - Observer trajectory γ in M.
 - \circ $\dot{\gamma}$ must be timelike and future-directed.

Observers on metric spacetimes

- Observer trajectories:
 - o Observer trajectory γ in M.
 - \circ $\dot{\gamma}$ must be timelike and future-directed.
- Inertial observers:
 - Minimize arc-length functional:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt.$$

⇒ Geodesic equation:

$$\ddot{\gamma}^a + \Gamma^a{}_{bc}\dot{\gamma}^b\dot{\gamma}^c = 0.$$

Observers on Finsler spacetimes

- Observer trajectories and canonical lifts:
 - Observer trajectory γ in M.
 - Lift γ to a curve $\Gamma = (\gamma, \dot{\gamma})$ in TM.
 - \circ Curves Γ in TM are canonical lifts if and only if

$$\dot{\Gamma} \perp dx^a = y^a$$
.

∘ Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)}$; Γ is curve in $O \subset TM$.

Observers on Finsler spacetimes

- Observer trajectories and canonical lifts:
 - Observer trajectory γ in M.
 - Lift γ to a curve $\Gamma = (\gamma, \dot{\gamma})$ in TM.
 - \circ Curves Γ in TM are canonical lifts if and only if

$$\dot{\Gamma} \perp dx^a = y^a$$
.

- Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)}$; Γ is curve in $O \subset TM$.
- Inertial observers:
 - Minimize arc length functional:

$$\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt.$$

⇒ Geodesic equation:

$$\ddot{\gamma}^a + N^a{}_b \dot{\gamma}^b = 0.$$

 \Rightarrow Γ is integral curve of geodesic spray:

$$\dot{\Gamma} = \mathbf{S} = y^a \delta_a$$
.

Observers on Cartan observer space

- Observer curves:
 - Consider curve Γ in O.
 - ⇒ Tangent vector splits into translation and boost:

$$\dot{\Gamma} = \left(oldsymbol{e}^i \dot{\Gamma}
ight) oldsymbol{e}_i + \left(oldsymbol{b}^lpha \dot{\Gamma}
ight) oldsymbol{b}_lpha \, .$$

Observers on Cartan observer space

- Observer curves:
 - Consider curve Γ in O.
 - ⇒ Tangent vector splits into translation and boost:

$$\dot{\Gamma} = \left(e^{i}\dot{\Gamma}\right)\underline{e}_{i} + \left(b^{\alpha}\dot{\Gamma}\right)\underline{b}_{\alpha}$$
.

- Translational component of the tangent vector:
 - Split into time and space components:

$$\left(\textbf{\textit{e}}^{\emph{i}}\dot{\Gamma}\right)\underline{\textbf{\textit{e}}}_{\emph{i}}=\left(\textbf{\textit{e}}^{0}\dot{\Gamma}\right)\underline{\textbf{\textit{e}}}_{0}+\left(\textbf{\textit{e}}^{\alpha}\dot{\Gamma}\right)\underline{\textbf{\textit{e}}}_{\alpha}\,.$$

- o Components are relative to observer's frame.
- ⇒ Physical observer: translation corresponds to time direction:

$$e^0\dot{\Gamma} = 1 \wedge e^{lpha}\dot{\Gamma} = 0 \Leftrightarrow e^i\dot{\Gamma} = \delta_0^i$$
.

Observers on Cartan observer space

- Observer curves:
 - Consider curve Γ in O.
 - ⇒ Tangent vector splits into translation and boost:

$$\dot{\Gamma} = \left(e^i \dot{\Gamma} \right) \underline{e}_i + \left(b^{\alpha} \dot{\Gamma} \right) \underline{b}_{\alpha} .$$

- Translational component of the tangent vector:
 - Split into time and space components:

$$\left(e^{i}\dot{\Gamma}\right)\underline{e}_{i}=\left(e^{0}\dot{\Gamma}\right)\underline{e}_{0}+\left(e^{\alpha}\dot{\Gamma}\right)\underline{e}_{\alpha}.$$

- o Components are relative to observer's frame.
- ⇒ Physical observer: translation corresponds to time direction:

$$e^{0}\dot{\Gamma} = 1 \wedge e^{\alpha}\dot{\Gamma} = 0 \Leftrightarrow e^{i}\dot{\Gamma} = \delta_{0}^{i}$$
.

- Boost component of the tangent vector:
 - Measures acceleration in observer's frame.
 - Inertial observers are non-accelerating: $b^{\alpha}\dot{\Gamma} = 0$.
 - \rightarrow Inertial observers follow integral curves of time translation: $\dot{\Gamma} e$

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{\mathcal{O}}$.
 - Coordinate expression: $\mathbf{r} = y^a(\partial_a N^b{}_a\bar{\partial}_b)$.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{\mathcal{O}}$.
 - Coordinate expression: $\mathbf{r} = y^a(\partial_a N^b{}_a\bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \mathit{f}_0^{a} \left(\partial_a - \mathit{f}_j^{b} \mathit{F}^{c}{}_{ab} \bar{\partial}_c^{j}
ight) \,.$$

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \sim Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{\mathcal{O}}$.
 - Coordinate expression: $\mathbf{r} = y^a(\partial_a N^b{}_a\bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \mathbf{y}^a \left(\partial_a - f_j^b F^c{}_{ab} \bar{\partial}_c^j \right) \,.$$

• Temporal frame component is observer velocity: $f_0^a = y^a$.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{\mathcal{O}}$.
 - Coordinate expression: $\mathbf{r} = y^a(\partial_a N^b{}_a\bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \left(y^a \partial_a - f_j^b N^c_{b} \bar{\partial}_c^j \right) \,.$$

- Temporal frame component is observer velocity: $f_0^a = y^a$.
- Relation between connections coefficients: $y^a F^c_{ab} = N^c_b$.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{O}$.
 - Coordinate expression: $\mathbf{r} = y^a(\partial_a N^b{}_a\bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \left(y^a \partial_a - f_j^b N^c{}_b \bar{\partial}_c^j \right) \,.$$

- Temporal frame component is observer velocity: $f_0^a = y^a$.
- Relation between connections coefficients: $y^a F^c_{ab} = N^c_b$.
- \Rightarrow Observer trajectories Γ agree in Finsler and Cartan descriptions.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space O (level set).
 - \rightarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{O}$.
 - Coordinate expression: $\mathbf{r} = y^a(\partial_a N^b{}_a\bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \left(y^a \partial_a - f_j^b N^c{}_b \bar{\partial}_c^j \right) \,.$$

- Temporal frame component is observer velocity: $f_0^a = y^a$.
- Relation between connections coefficients: $y^a F^c_{ab} = N^c_b$.
- \Rightarrow Observer trajectories Γ agree in Finsler and Cartan descriptions.
- ⇒ Cartan trajectories correspond to Finslerian parallel transport.

Outline

1. Introduction

- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity
- 4. Conclusion

Metric geometry

Einstein-Hilbert action:

$$S_{\text{EH}} = \frac{1}{2\kappa} \int_{M} d^4x \sqrt{-g} R$$

Metric geometry

Einstein-Hilbert action:

$$S_{\mathsf{EH}} = rac{1}{2\kappa} \int_{M} d^4 x \sqrt{-g} \, R$$

Finsler geometry

Using non-linear connection:

$$S_{\mathsf{N}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} R^a{}_{ab} y^b$$

Using linear connection:

$$S_{\mathsf{L}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} g^{Fab} R^{c}_{acb}$$

Metric geometry

Einstein-Hilbert action:

$$S_{\mathsf{EH}} = \frac{1}{2\kappa} \int_{M} d^4 x \sqrt{-g} \, R$$

Finsler geometry

Using non-linear connection:

$$S_{\mathsf{N}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} R^{a}{}_{ab} y^{b}$$

Using linear connection:

$$S_{\mathsf{L}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} \, g^{F\,ab} R^c_{acb}$$

Cartan geometry

Using horizontal vector fields:

$$\mathcal{S}_{\mathsf{H}} = \int_O ilde{b}^lpha([ilde{oldsymbol{e}}_lpha, ilde{oldsymbol{e}}_0])\,\mathsf{Vol}_O$$

Using Cartan curvature:

$$\mathcal{S}_{\mathsf{C}} = \int_{O} \kappa_{\mathfrak{h}} (ilde{\mathcal{F}}_{\mathfrak{h}} \wedge ilde{\mathcal{F}}_{\mathfrak{h}}) \wedge \mathsf{Vol}_{\mathcal{S}}$$

Metric geometry

Einstein-Hilbert action:

$$S_{\mathsf{EH}} = \frac{1}{2\kappa} \int_{M} d^4 x \sqrt{-g} \, R$$

Finsler geometry

Using non-linear connection:

$$S_{\mathsf{N}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} R^{a}{}_{ab} y^{b}$$

Using linear connection:

$$S_{\mathsf{L}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} \, g^{F\,ab} R^c_{acb}$$

Cartan geometry

Using horizontal vector fields:

$$\mathcal{S}_{\mathsf{H}} = \int_{O} ilde{b}^{lpha}([ilde{\underline{e}}_{lpha}, ilde{\underline{e}}_{0}]) \, \mathsf{Vol}_{O}$$

Using Cartan curvature:

$$\mathcal{S}_{\mathsf{C}} = \int_{\mathcal{O}} \kappa_{\mathfrak{h}} (ilde{\mathcal{F}}_{\mathfrak{h}} \wedge ilde{\mathcal{F}}_{\mathfrak{h}}) \wedge \mathsf{Vol}_{\mathcal{S}}$$

Gravity from Cartan to Finsler

• MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise '12]

$$\mathcal{S}_{\mathcal{G}} = \int_{\mathcal{O}} \epsilon_{lphaeta\gamma} \operatorname{\mathsf{tr}}_{\mathfrak{h}}(m{\mathcal{F}}_{\mathfrak{h}} \wedge \star m{\mathcal{F}}_{\mathfrak{h}}) \wedge m{b}^{lpha} \wedge m{b}^{eta} \wedge m{b}^{\gamma}$$

- Hodge operator ★ on ħ.
- Non-degenerate H-invariant inner product tr_ħ on ħ.
- ∘ Boost part $b \in \Omega_1(P, \mathfrak{y})$ of the Cartan connection.

Gravity from Cartan to Finsler

MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise '12]

$$\mathcal{S}_{\mathcal{G}} = \int_{\mathcal{O}} \epsilon_{lphaeta\gamma} \operatorname{\mathsf{tr}}_{\mathfrak{h}}(m{\mathcal{F}}_{\mathfrak{h}} \wedge \star m{\mathcal{F}}_{\mathfrak{h}}) \wedge m{b}^{lpha} \wedge m{b}^{eta} \wedge m{b}^{\gamma}$$

- Hodge operator ★ on ħ.
- Non-degenerate H-invariant inner product tr_ħ on ħ.
- Boost part $b \in \Omega_1(P, \mathfrak{y})$ of the Cartan connection.
- Translate terms into Finsler language (with $R = d\omega + \frac{1}{2}[\omega, \omega]$):
 - Curvature scalar:

$$[e,e] \wedge \star R \leadsto g^{F\,ab} R^c_{\ acb} \, dV$$
.

Cosmological constant:

$$[e,e] \wedge \star [e,e] \leadsto dV$$
.

Gauss-Bonnet term:

$$R \wedge \star R \leadsto \epsilon^{abcd} \epsilon^{efgh} R_{abef} R_{cdah} dV$$
.

⇒ Gravity theory on Finsler spacetime.

Gravity from Finsler to Cartan

• Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

$$S_G = \int_O d^4x \, d^3y \, \sqrt{-\tilde{G}} R^a{}_{ab} y^b \, .$$

- Sasaki metric G
 on O.
- Non-linear curvature R^a_{ab}.

Gravity from Finsler to Cartan

• Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

$$S_G = \int_O d^4x \, d^3y \, \sqrt{-\tilde{G}} R^a{}_{ab} y^b \, .$$

- Sasaki metric G
 on O.
- Non-linear curvature R^a_{ab}.
- Translate terms into Cartan language:

$$d^4x d^3y \sqrt{-\tilde{G}} = \epsilon_{ijkl}\epsilon_{\alpha\beta\gamma} e^i \wedge e^j \wedge e^k \wedge e^l \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma},$$
 $R^a_{ab}y^b = b^{\alpha}[\underline{A}(\mathcal{Z}_{\alpha}),\underline{A}(\mathcal{Z}_{0})].$

⇒ Gravity theory on observer space.

Outline

- 1. Introduction
- 2. Geometries
- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Summary

- Finsler spacetimes
 - Generalization of pseudo-Riemannian spacetimes.
 - Geometry defined by function *L* on *TM*.
 - Lengths measured by Finsler function $F = |L|^{\frac{1}{n}}$.
 - Metric generalized by Finsler metric g_{ab}^F .

Summary

Finsler spacetimes

- Generalization of pseudo-Riemannian spacetimes.
- Geometry defined by function *L* on *TM*.
- Lengths measured by Finsler function $F = |L|^{\frac{1}{n}}$.
- Metric generalized by Finsler metric g_{ab}^F .

Cartan geometry on observer space

- Can be obtained from Finsler spacetimes.
- ∘ Geometry on principal SO(3)-bundle π : $P \rightarrow O$.
- Space O of physical observer four-velocities.
- Space P of physical observer frames.
- ∘ Geometry defined by Cartan connection $A \in \Omega^1(P, \mathfrak{g})$.

Summary

- Finsler spacetimes
 - Generalization of pseudo-Riemannian spacetimes.
 - Geometry defined by function *L* on *TM*.
 - Lengths measured by Finsler function $F = |L|^{\frac{1}{n}}$.
 - Metric generalized by Finsler metric g_{ab}^F .
- Cartan geometry on observer space
 - Can be obtained from Finsler spacetimes.
 - Geometry on principal SO(3)-bundle $\pi: P \to O$.
 - Space O of physical observer four-velocities.
 - Space P of physical observer frames.
 - ∘ Geometry defined by Cartan connection $A \in \Omega^1(P, \mathfrak{g})$.
- Different geometries provide compatible definitions of:
 - Causality
 - Observers
 - Observables
 - Gravity

- Observer space not most suitable for Lagrange theory:
 - Lagrangian defined on jet bundle over configuration bundle.
 - o Critical sections: solutions of Euler-Lagrange equations.
 - o Euler-Lagrange equations determined from variational calculus.
 - Variational calculus assumes fixed configuration bundle.
 - \oint Finsler observer space depends on length function L.

- Observer space not most suitable for Lagrange theory:
 - o Lagrangian defined on jet bundle over configuration bundle.
 - o Critical sections: solutions of Euler-Lagrange equations.
 - o Euler-Lagrange equations determined from variational calculus.
 - Variational calculus assumes fixed configuration bundle.
 - $math{\cancel{\xi}}$ Finsler observer space depends on length function L.
- Proper approach uses positive projective tangent bundle:
 - ∘ *PTM*⁺: equivalence classes $[v] = \{\lambda v, \lambda \in \mathbb{R}^+\}$ of tangent vectors.
 - Finsler length function: section of associated bundle over *PTM*⁺.
 - √ Configuration bundle independent of dynamical geometry.

- Observer space not most suitable for Lagrange theory:
 - Lagrangian defined on jet bundle over configuration bundle.
 - Critical sections: solutions of Euler-Lagrange equations.
 - o Euler-Lagrange equations determined from variational calculus.
 - Variational calculus assumes fixed configuration bundle.
 - $math{\cancel{\xi}}$ Finsler observer space depends on length function L.
- Proper approach uses positive projective tangent bundle:
 - PTM^+ : equivalence classes $[v] = \{\lambda v, \lambda \in \mathbb{R}^+\}$ of tangent vectors.
 - Finsler length function: section of associated bundle over *PTM*⁺.
 - √ Configuration bundle independent of dynamical geometry.
- Work done in projective bundle approach:
 - Finsler gravity action from variational completion [MH, Pfeifer, Voicu '18]
 - Relativistic kinetic gases [MH, Pfeifer, Voicu '19]
 - Cosmological Finsler spacetimes [MH, Pfeifer, Voicu '20]
 - o Finsler spacetimes as backgrounds for field theories [MH, Pfeifer, Voicu '21]

- Observer space not most suitable for Lagrange theory:
 - Lagrangian defined on jet bundle over configuration bundle.
 - Critical sections: solutions of Euler-Lagrange equations.
 - o Euler-Lagrange equations determined from variational calculus.
 - o Variational calculus assumes fixed configuration bundle.
 - \oint Finsler observer space depends on length function L.
- Proper approach uses positive projective tangent bundle:
 - ∘ *PTM*⁺: equivalence classes $[v] = \{\lambda v, \lambda \in \mathbb{R}^+\}$ of tangent vectors.
 - Finsler length function: section of associated bundle over *PTM*⁺.
 - √ Configuration bundle independent of dynamical geometry.
- Work done in projective bundle approach:
 - Finsler gravity action from variational completion [MH, Pfeifer, Voicu '18]
 - Relativistic kinetic gases [MH, Pfeifer, Voicu '19]
 - o Cosmological Finsler spacetimes [MH, Pfeifer, Voicu '20]
 - Finsler spacetimes as backgrounds for field theories [MH, Pfeifer, Voicu '21]
- Cartan geometry version of projective bundle approach?

References

M. Hohmann,

"Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa,"

Phys. Rev. D 87 (2013) no.12, 124034 [arXiv:1304.5430 [gr-qc]].

M. Hohmann,

"Observer dependent geometries,"

in: "Mathematical Structures of the Universe", Copernicus Center Press, Krakow, 2014 [arXiv:1403.4005 [math-ph]].

M. Hohmann,

"Spacetime and observer space symmetries in the language of Cartan geometry," J. Math. Phys. **57** (2016) no.8, 082502 [arXiv:1505.07809 [math-ph]].