Prospects in Finsler gravity and cosmology

Manuel Hohmann

Laboratory of Theoretical Physics, Institute of Physics, University of Tartu Center of Excellence "Fundamental Universe"

Space Science @ Drop Tower Seminar - 7. November 2025

Overview

1. Motivation

- 2. Kinetic gases in Finsler geometry
- 3. Cosmology
- 4. Conclusion

Overview

1. Motivation

- 2. Kinetic gases in Finsler geometry
- 3. Cosmology
- 4. Conclusion

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \leadsto doesn't work ${\not \downarrow}$.

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \leadsto doesn't work $\rlap{/}{\rlap/}_{\! 2}.$
 - $\circ~$ Guess a complete theory of quantum gravity \leadsto hard ${\it \rlap{\sl}{\rlap{\sl}}}\,.$

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ¼.
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\it \rlap{\sl}{\rlap{\sl}}}\,.$

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ½.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - $\circ~$ Guess a complete theory of quantum gravity \leadsto hard ${\it \rlap{\sl}{\rlap{\sl}}}\,.$
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - \circ Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.

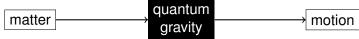
- How can we quantize gravity?
 - ∘ Use same methods as in QFT \leadsto doesn't work \oint .
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - \circ Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work \(\psi\).
 - Guess a complete theory of quantum gravity → hard ½.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - Think of possible observables in the chosen system.

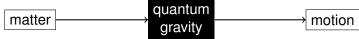
- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - o Think of possible observables in the chosen system.
 - Calculate how effective quantum gravity influences observables.

- How can we quantize gravity?
 - Use same methods as in QFT → doesn't work ¼.
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical → leaves unsolved problems ¼.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - o Think of possible observables in the chosen system.
 - o Calculate how effective quantum gravity influences observables.
- ⇒ Here: effective quantum gravity phenomenology with gas dynamics near black holes.

• Basic operating principle of (quantum) gravity theory:

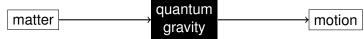


Basic operating principle of (quantum) gravity theory:

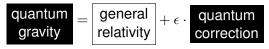


Quantum gravity is a black box!

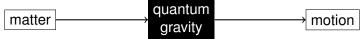
Basic operating principle of (quantum) gravity theory:



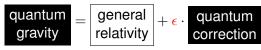
- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:



• Basic operating principle of (quantum) gravity theory:

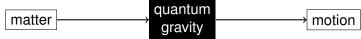


- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

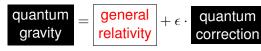


 \leadsto We still have a black box, but it is multiplied by $\epsilon \ll 1 \leadsto$ perturbation.

• Basic operating principle of (quantum) gravity theory:

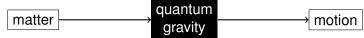


- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:



- \leadsto We still have a black box, but it is multiplied by $\epsilon \ll 1 \leadsto$ perturbation.
- ✓ General relativity is a very simple theory!

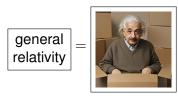
Basic operating principle of (quantum) gravity theory:



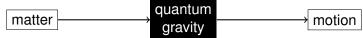
- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

$$\begin{array}{c} \text{quantum} \\ \text{gravity} \end{array} = \begin{bmatrix} \text{general} \\ \text{relativity} \end{bmatrix} + \epsilon \cdot \begin{array}{c} \text{quantum} \\ \text{correction} \end{array}$$

- \leadsto We still have a black box, but it is multiplied by $\epsilon \ll 1 \leadsto$ perturbation.
- √ General relativity is a very simple theory!
- ⇒ We know what is in the white box:



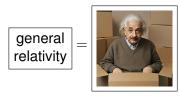
Basic operating principle of (quantum) gravity theory:



- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

$$\begin{array}{c} \text{quantum} \\ \text{gravity} \end{array} = \begin{array}{c} \text{general} \\ \text{relativity} \end{array} + \epsilon \cdot \begin{array}{c} \text{quantum} \\ \text{correction} \end{array}$$

- \leadsto We still have a black box, but it is multiplied by $\epsilon \ll 1 \leadsto$ perturbation.
- ✓ General relativity is a very simple theory!
- ⇒ We know what is in the white box:



→ Only need to study (all) possible quantum corrections!

Overview

1. Motivation

- 2. Kinetic gases in Finsler geometry
- 3. Cosmology
- 4. Conclusion

The clock postulate

Proper time along a curve in Lorentzian spacetime:

$$au = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)}dt$$
 .

The clock postulate

Proper time along a curve in Lorentzian spacetime:

$$au = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)}dt$$
 .

Finsler geometry: use a more general length functional:

$$\tau = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt.$$

- Finsler function $F: TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$

Finsler spacetimes

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- ⇒ Finsler metric with Lorentz signature:

$$g_{ab}^F(x,y) = \frac{1}{2} \frac{\partial}{\partial y^a} \frac{\partial}{\partial y^b} F^2(x,y).$$

⇒ Notion of timelike, lightlike, spacelike tangent vectors.

Finsler spacetimes

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- ⇒ Finsler metric with Lorentz signature:

$$g_{ab}^F(x,y) = \frac{1}{2} \frac{\partial}{\partial y^a} \frac{\partial}{\partial y^b} F^2(x,y).$$

- ⇒ Notion of timelike, lightlike, spacelike tangent vectors.
- Unit vectors $y \in T_x M$ defined by

$$F^{2}(x,y) = g_{ab}^{F}(x,y)y^{a}y^{b} = 1$$
.

 \Rightarrow Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.

Finsler spacetimes

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- ⇒ Finsler metric with Lorentz signature:

$$g_{ab}^F(x,y) = \frac{1}{2} \frac{\partial}{\partial y^a} \frac{\partial}{\partial y^b} F^2(x,y).$$

- ⇒ Notion of timelike, lightlike, spacelike tangent vectors.
 - Unit vectors $y \in T_x M$ defined by

$$F^{2}(x,y) = g_{ab}^{F}(x,y)y^{a}y^{b} = 1$$
.

- \Rightarrow Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
- Ω_X contains a closed connected component $S_X \subseteq \Omega_X$.
- \rightsquigarrow Causality: S_x corresponds to physical observers.

Cartan non-linear connection:

$$N^{a}_{b} = \frac{1}{4}\bar{\partial}_{b}\left[g^{Fac}(y^{d}\partial_{d}\bar{\partial}_{c}F^{2} - \partial_{c}F^{2})\right]$$

Cartan non-linear connection:

$$N^{a}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right]$$

- ⇒ Split of the tangent and cotangent bundles:
 - Tangent bundle: TTM = HTM ⊕ VTM

$$\delta_a = \partial_a - N^b_{\ a} \bar{\partial}_b \,, \quad \bar{\partial}_a$$

Cotangent bundle: T*TM = H*TM ⊕ V*TM

$$dx^a$$
, $\delta y^a = dy^a + N^a{}_b dx^b$

Cartan non-linear connection:

$$N^{a}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right]$$

- ⇒ Split of the tangent and cotangent bundles:
 - Tangent bundle: TTM = HTM ⊕ VTM

$$\delta_a = \partial_a - N^b{}_a \bar{\partial}_b \,, \quad \bar{\partial}_a$$

○ Cotangent bundle: $T^*TM = H^*TM \oplus V^*TM$

$$dx^a$$
, $\delta y^a = dy^a + N^a{}_b dx^b$

Sasaki metric:

$$G = -g_{ab}^F \frac{dx^a}{dx^a} \otimes \frac{dx^b}{f^2} - \frac{g_{ab}^F}{f^2} \delta y^a \otimes \delta y^b$$

Cartan non-linear connection:

$$N^{a}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right]$$

- ⇒ Split of the tangent and cotangent bundles:
 - Tangent bundle: TTM = HTM ⊕ VTM

○ Cotangent bundle: $T^*TM = H^*TM \oplus V^*TM$

$$dx^a$$
, $\delta y^a = dy^a + N^a{}_b dx^b$

Sasaki metric:

$$G = -g_{ab}^F dx^a \otimes dx^b - rac{g_{ab}^F}{F^2} \delta y^a \otimes \delta y^b$$

• Geodesic spray:

$$S = y^a \delta_a$$

Geometry on observer space

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Physical observers correspond to $S_x \subseteq \Omega_x$.
- Definition of observer space:

$$O=\bigcup_{x\in M} S_x\subset TM.$$

Geometry on observer space

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Physical observers correspond to $S_x \subseteq \Omega_x$.
- Definition of observer space:

$$O=\bigcup_{x\in M}S_x\subset TM.$$

- Sasaki metric \tilde{G} on O given by pullback of G to O.
- Volume form Σ of Sasaki metric \tilde{G} .
- Geodesic spray S restricts to Reeb vector field r on O.

Geometry on observer space

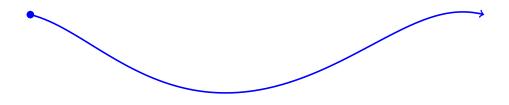
- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Physical observers correspond to $S_x \subseteq \Omega_x$.
- Definition of observer space:

$$O=\bigcup_{x\in M}S_x\subset TM.$$

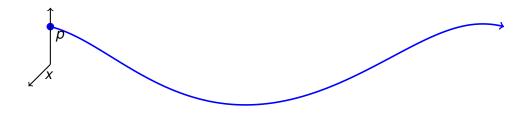
- Sasaki metric \tilde{G} on O given by pullback of G to O.
- Volume form Σ of Sasaki metric \tilde{G} .
- Geodesic spray S restricts to Reeb vector field r on O.
- Geodesic hypersurface measure $\omega = \iota_{\mathbf{r}} \Sigma$.
- Note that $\mathcal{L}_{\mathbf{r}}\Sigma = 0$ and $d\omega = 0$.

• Gas is constituted by particles of equal mass.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.



- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.



- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- ⇒ Gas dynamics follows from Hamiltonian particle dynamics.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- ⇒ Gas dynamics follows from Hamiltonian particle dynamics.

Collisionless gas

Particle density function is constant along particle trajectories in phase space.

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0.$$

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0.$$

• Canonical lift of curve to tangent bundle *TM*:

$$x, y = \dot{x}$$
.

Lift of geodesic equation:

$$\dot{x}^a = y^a$$
, $\dot{y}^a = -N^a{}_b(x,y)y^b$.

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0.$$

• Canonical lift of curve to tangent bundle *TM*:

$$X, \quad Y = \dot{X}.$$

Lift of geodesic equation:

$$\dot{x}^a = y^a$$
, $\dot{y}^a = -N^a{}_b(x,y)y^b$.

⇒ Solutions are integral curves of vector field:

$$y^a \partial_a - y^b N^a{}_b \bar{\partial}_a = y^a \delta_a = \mathbf{S}$$
.

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0.$$

• Canonical lift of curve to tangent bundle *TM*:

$$x, y = \dot{x}$$
.

Lift of geodesic equation:

$$\dot{x}^a = y^a, \quad \dot{y}^a = -N^a{}_b(x,y)y^b.$$

⇒ Solutions are integral curves of vector field:

$$y^a \partial_a - y^b N^a{}_b \bar{\partial}_a = y^a \delta_a = \mathbf{S}.$$

- Tangent vectors are future unit timelike: $(x, y) \in O$.
- \Rightarrow Particle trajectories are piecewise integral curves of **r** on *O*.

• Model particle dynamics on cotangent bundle T^*M with coordinates (x^a, \bar{x}_a) .

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^a, \bar{x}_a) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2} = H(x^a, \bar{x}_a). \tag{1}$$

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^a, \bar{x}_a) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2}=H(x^a,\bar{x}_a). \tag{1}$$

Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^a = \bar{\partial}^a H, \quad \dot{\bar{x}}^a = -\partial_a H.$$
 (2)

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^a, \bar{x}_a) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2}=H(x^a,\bar{x}_a). \tag{1}$$

Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^a = \bar{\partial}^a H, \quad \dot{\bar{x}}^a = -\partial_a H.$$
 (2)

• Canonical cotangent bundle geometry: symplectic form $\omega \in \Omega^2(T^*M)$ as

$$\theta = \bar{x}_a dx^a, \quad \omega = d\theta = d\bar{x}_a \wedge dx^a.$$
 (3)

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^a, \bar{x}_a) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2} = H(x^a, \bar{x}_a). \tag{1}$$

Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^a = \bar{\partial}^a H, \quad \dot{\bar{x}}^a = -\partial_a H.$$
 (2)

• Canonical cotangent bundle geometry: symplectic form $\omega \in \Omega^2(T^*M)$ as

$$\theta = \bar{x}_a dx^a$$
, $\omega = d\theta = d\bar{x}_a \wedge dx^a$. (3)

• Hamiltonian vector field X_H on T*M: unique solution of

$$\iota_{X_H}\omega = -\mathsf{d}H\,. \tag{4}$$

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^a, \bar{x}_a) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2}=H(x^a,\bar{x}_a). \tag{1}$$

Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^a = \bar{\partial}^a H, \quad \dot{\bar{x}}^a = -\partial_a H.$$
 (2)

• Canonical cotangent bundle geometry: symplectic form $\omega \in \Omega^2(T^*M)$ as

$$\theta = \bar{x}_a dx^a$$
, $\omega = d\theta = d\bar{x}_a \wedge dx^a$. (3)

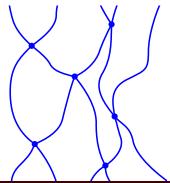
Hamiltonian vector field X_H on T*M: unique solution of

$$\iota_{X_H}\omega = -\mathsf{d}H. \tag{4}$$

 \Rightarrow Particle trajectories are integral curves of X_H .

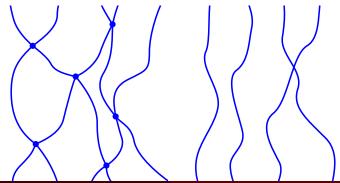
Definition of kinetic gas

- Single-component gas:
 - o Constituted by classical, relativistic particles.
 - $\circ\,$ Particles have equal properties (mass, charge, ...).
 - o Particles follow piecewise geodesic curves.
 - o Endpoints of geodesics are interactions with other particles.



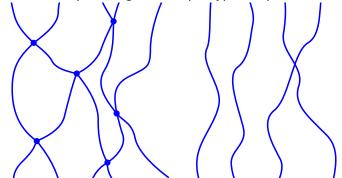
Definition of kinetic gas

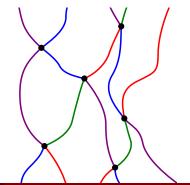
- Single-component gas:
 - Constituted by classical, relativistic particles.
 - Particles have equal properties (mass, charge, ...).
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.
- Collisionless gas:
 - Particles do not interact with other particles.
 - ⇒ Particles follow geodesics.



Definition of kinetic gas

- Single-component gas:
 - Constituted by classical, relativistic particles.
 - $\circ~$ Particles have equal properties (mass, charge, \ldots).
 - Particles follow piecewise geodesic curves.
 - o Endpoints of geodesics are interactions with other particles.
- Collisionless gas:
 - Particles do not interact with other particles.
 - ⇒ Particles follow geodesics.
- Multi-component gas: multiple types of particles.





One-particle distribution function

- Kinetic gas described by density in velocity space:
 - Consider space O of physical (unit, timelike, future pointing) four-velocities.
 - Consider density on physical velocity space.

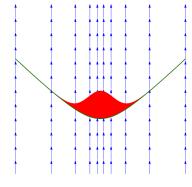
One-particle distribution function

- Kinetic gas described by density in velocity space:
 - Consider space O of physical (unit, timelike, future pointing) four-velocities.
 - o Consider density on physical velocity space.
- Define one-particle distribution function $\phi: O \to \mathbb{R}^+$ such that:

For every hypersurface $\sigma \subset O$,

$$N[\sigma] = \int_{\sigma} \frac{\phi}{\Omega}$$

of particle trajectories through σ .



0

Counting of particle trajectories respects hypersurface orientation.

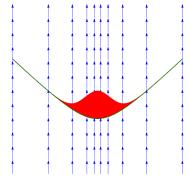
One-particle distribution function

- Kinetic gas described by density in velocity space:
 - Consider space O of physical (unit, timelike, future pointing) four-velocities.
 - o Consider density on physical velocity space.
- Define one-particle distribution function $\phi: O \to \mathbb{R}^+$ such that:

For every hypersurface $\sigma \subset O$,

$$N[\sigma] = \int_{\sigma} \frac{\phi}{\Omega}$$

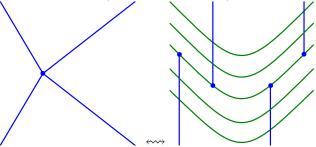
of particle trajectories through σ .



- 0
- Counting of particle trajectories respects hypersurface orientation.
- For multi-component fluids: ϕ_i for each component i.

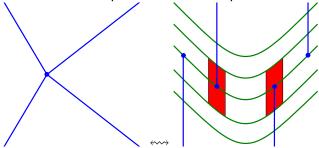
Collisions & the Liouville equation

• Collision in spacetime *** interruption in observer space.



Collisions & the Liouville equation

• Collision in spacetime \longleftrightarrow interruption in observer space.



• For any open set $V \in O$,

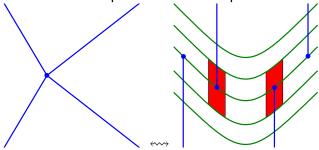
$$\int_{\partial V} \phi \Omega = \int_{V} d(\phi \Omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

of outbound trajectories - # of inbound trajectories.

 \Rightarrow Collision density measured by $\mathcal{L}_{\mathbf{r}}\phi$.

Collisions & the Liouville equation

• Collision in spacetime \longleftrightarrow interruption in observer space.



• For any open set $V \in O$,

$$\int_{\partial V} \phi \Omega = \int_{V} d(\phi \Omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

of outbound trajectories - # of inbound trajectories.

- \Rightarrow Collision density measured by $\mathcal{L}_{\mathbf{r}}\phi$.
- Collisionless fluid: trajectories have no endpoints, $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
- ⇒ Simple, first order equation of motion for collisionless fluid.
- $\Rightarrow \phi$ is constant along integral curves of **r**.

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

Introduce symplectic volume form:

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

• Kinetic gas: particles of equal mass described by phase space trajectories on T^*M .

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T^*M .
- One particle distribution function $\phi: T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \frac{\phi}{\Omega} \Omega. \tag{6}$$

Introduce symplectic volume form:

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T^*M .
- One particle distribution function $\phi: T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \phi \Omega. \tag{6}$$

• σ : hypersurface in T^*M which is transverse to X_H .

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T^*M .
- One particle distribution function $\phi: T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \phi \Omega. \tag{6}$$

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T^*M .
- One particle distribution function $\phi: T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \phi_{\Omega} \,. \tag{6}$$

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .
- $\Omega = \iota_{X_H} \Sigma$: particle measure.

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T^*M .
- One particle distribution function $\phi: T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \phi \Omega \,. \tag{6}$$

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .
- $\Omega = \iota_{X_H} \Sigma$: particle measure.
- Collisionless gas: particles follow Hamilton's equations of motion, no interactions.

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T^*M .
- One particle distribution function $\phi: T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \phi \Omega$$
 (6)

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .
- $\Omega = \iota_{X_H} \Sigma$: particle measure.
- Collisionless gas: particles follow Hamilton's equations of motion, no interactions.
- \Rightarrow 1-PDF follows Liouville equation: $\mathcal{L}_{X_H}\phi = 0$.

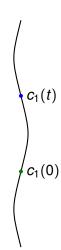
Action of a kinetic gas

Action for a single point particle:

$$S=m\int_0^t (F\circ c_1)(\tau)\,d\tau$$
.

Assume arc length parameter τ :

$$S = mt$$
.

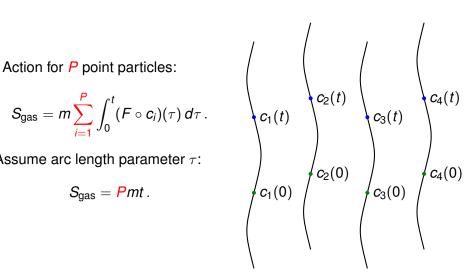


Action of a kinetic gas

$$S_{\text{gas}} = m \sum_{i=1}^{P} \int_{0}^{t} (F \circ c_{i})(\tau) d\tau$$

Assume arc length parameter τ :

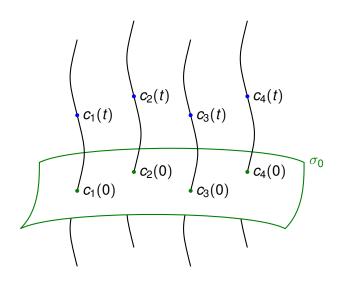
$$S_{gas} = Pmt$$



Action of a kinetic gas

• Hypersurface of starting points:

$$c_i(0) \in \sigma_0$$
.

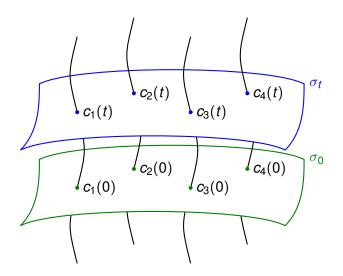


• Hypersurface of starting points:

$$c_i(0) \in \sigma_0$$
.

• Hypersurface of end points:

$$c_i(t) \in \sigma_t$$
.



Hypersurface of starting points:

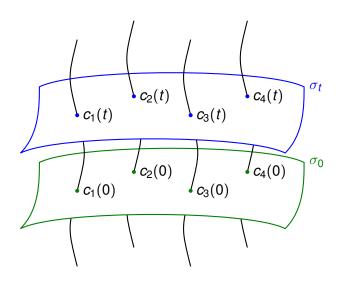
$$c_i(0) \in \sigma_0$$
.

Hypersurface of end points:

$$c_i(t) \in \sigma_t$$
.

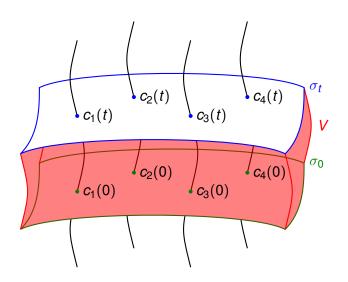
• Number of particle trajectories:

$$P = N[\sigma_{ au}] = \int_{\sigma_{ au}} \phi \Omega$$
 .



Consider volume

$$V = \bigcup_{\tau=0}^t \sigma_{\tau}$$



Consider volume

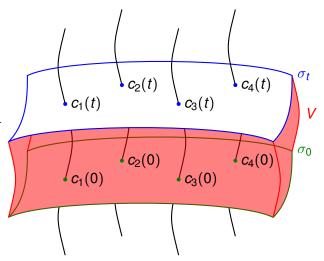
$$V = \bigcup_{\tau=0}^t \sigma_\tau.$$

Recall particle action integral:

$$egin{aligned} S_{ ext{gas}} &= \textit{Pmt} = \textit{m} \int_0^t \left(\int_{\sigma_{ au}} \phi \Omega \right) \textit{d} au \ &= \textit{m} \int_V \phi \Omega \wedge \omega \ &= \textit{m} \int_V \phi \Sigma \,. \end{aligned}$$

Defined through 1-PDF ϕ

[MH, Pfeifer, Voicu '19].

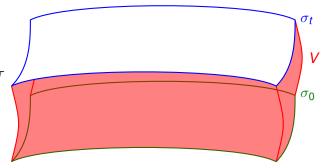


Consider volume

$$V = \bigcup_{\tau=0}^t \sigma_{\tau}$$
.

• Recall particle action integral:

$$egin{aligned} S_{ ext{gas}} &= Pmt = m \int_0^t \left(\int_{\sigma_{ au}} \phi \Omega
ight) d au \ &= m \int_V \phi \Omega \wedge \omega \ &= m \int_V \phi \Sigma \,. \end{aligned}$$



Defined through 1-PDF ϕ

[MH, Pfeifer, Voicu '19].

⇒ Forget particle trajectories!

Gravitational part of the action:

$$S_{ ext{grav}} = rac{1}{2\kappa^2} \int_V ext{\it R}_0 \Sigma \,.$$

Gravitational part of the action:

$$S_{ ext{grav}} = rac{1}{2\kappa^2} \int_V ext{\it R}_0 \Sigma \, .$$

• Finsler Ricci scalar $R_0 = L^{-1}R^a{}_{ab}y^b$ from curvature of non-linear connection:

$$R^{a}_{bc}\bar{\partial}_{a} = (\delta_{b}N^{a}_{c} - \delta_{c}N^{a}_{b})\bar{\partial}_{a} = [\delta_{b}, \delta_{c}].$$

• Gravitational part of the action:

$$S_{ ext{grav}} = rac{1}{2\kappa^2} \int_V ext{\it R}_0 \Sigma \, .$$

• Finsler Ricci scalar $R_0 = L^{-1}R^a{}_{ab}y^b$ from curvature of non-linear connection:

$$R^{a}_{bc}\bar{\partial}_{a} = (\delta_{b}N^{a}_{c} - \delta_{c}N^{a}_{b})\bar{\partial}_{a} = [\delta_{b}, \delta_{c}].$$

! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu '18].

Gravitational part of the action:

$$S_{ ext{grav}} = rac{1}{2\kappa^2} \int_V ext{\it R}_0 \Sigma \, .$$

• Finsler Ricci scalar $R_0 = L^{-1} R^a{}_{ab} y^b$ from curvature of non-linear connection:

$$R^{a}_{bc}\bar{\partial}_{a} = (\delta_{b}N^{a}_{c} - \delta_{c}N^{a}_{b})\bar{\partial}_{a} = [\delta_{b}, \delta_{c}].$$

- ! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu '18].
- ⇒ Reduces to Einstein-Hilbert action for metric geometry.

Variation of the kinetic gas action:

$$\delta_{F}S_{gas} = \int_{V} \phi rac{\delta F}{F} \Sigma \, .$$

Variation of the kinetic gas action:

$$\delta_{F}S_{gas} = \int_{V} \phi \frac{\delta F}{F} \Sigma$$
.

Variation of the Finsler gravity action:

$$\delta_{F} \mathcal{S}_{\text{grav}} = 2 \int_{V} \left[\frac{1}{2} g^{F \, ab} \bar{\partial}_{a} \bar{\partial}_{b} (F^{2} R_{0}) - 3 R_{0} - g^{F \, ab} (\nabla_{\delta_{a}} P_{b} - P_{a} P_{b} + \bar{\partial}_{a} (\nabla P_{b})) \right] \frac{\delta F}{F} \Sigma \,.$$

Variation of the kinetic gas action:

$$\delta_{F}S_{gas} = \int_{V} \phi \frac{\delta F}{F} \Sigma$$
.

Variation of the Finsler gravity action:

$$\delta_F S_{\text{grav}} = 2 \int_V \left[\frac{1}{2} g^{F \ ab} \bar{\partial}_a \bar{\partial}_b (F^2 R_0) - 3 R_0 - g^{F \ ab} (\nabla_{\delta_a} P_b - P_a P_b + \bar{\partial}_a (\nabla P_b)) \right] \frac{\delta F}{F} \Sigma \,.$$

Landsberg tensor measures deviation from metric geometry:

$$P^{a}_{bc} = \bar{\partial}_{c} N^{a}_{b} - \Gamma^{a}_{cb}, \quad P_{a} = P^{b}_{ba}.$$

Variation of the kinetic gas action:

$$\delta_{F}S_{gas} = \int_{V} \phi \frac{\delta F}{F} \Sigma$$
.

Variation of the Finsler gravity action:

$$\delta_F S_{\text{grav}} = 2 \int_V \left[\frac{1}{2} g^{F\,ab} \bar{\partial}_a \bar{\partial}_b (F^2 R_0) - 3 R_0 - g^{F\,ab} (\nabla_{\delta_a} P_b - P_a P_b + \bar{\partial}_a (\nabla P_b)) \right] \frac{\delta F}{F} \Sigma \,.$$

Landsberg tensor measures deviation from metric geometry:

$$P^{a}_{bc} = \bar{\partial}_{c} N^{a}_{b} - \Gamma^{a}_{cb}, \quad P_{a} = P^{b}_{ba}.$$

⇒ Gravitational field equations with kinetic gas matter [MH, Pfeifer, Voicu '19]:

$$\frac{1}{2}g^{Fab}\bar{\partial}_a\bar{\partial}_b(F^2R_0) - 3R_0 - g^{Fab}(\nabla_{\delta_a}P_b - P_aP_b + \bar{\partial}_a(\nabla P_b)) = -\kappa^2\phi$$

• Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- \Rightarrow Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{\chi}_i}H = \mathcal{L}_{\hat{\chi}_i}\phi = 0$ with

$$\hat{X} = X^a \partial_a - \bar{x}_b \partial_a X^b \bar{\partial}^a \,. \tag{7}$$

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- \Rightarrow Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_i}H=\mathcal{L}_{\hat{X}_i}\phi=0$ with

$$\hat{X} = X^a \partial_a - \bar{x}_b \partial_a X^b \bar{\partial}^a \,. \tag{7}$$

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - \circ Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - \circ Hamiltonian and 1-PDF depend only on r, P, E, L.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- \Rightarrow Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_i}H = \mathcal{L}_{\hat{X}_i}\phi = 0$ with

$$\hat{X} = X^a \partial_a - \bar{x}_b \partial_a X^b \bar{\partial}^a \,. \tag{7}$$

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - \circ Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on r, P, E, L.
 - Also Hamiltonian is constant of motion: $X_H H = 0$.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- \Rightarrow Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_i}H=\mathcal{L}_{\hat{X}_i}\phi=0$ with

$$\hat{X} = X^a \partial_a - \bar{x}_b \partial_a X^b \bar{\partial}^a. \tag{7}$$

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - \circ Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on r, P, E, L.
 - Also Hamiltonian is constant of motion: $X_H H = 0$.
- \rightarrow Replace P by H in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - \circ Θ, Φ, *E*, *L*, *H* are constant along trajectories.
 - 1-PDF depends only on r, E, L, H.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- \Rightarrow Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{\chi}_i}H = \mathcal{L}_{\hat{\chi}_i}\phi = 0$ with

$$\hat{X} = X^a \partial_a - \bar{x}_b \partial_a X^b \bar{\partial}^a. \tag{7}$$

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - \circ Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on r, P, E, L.
- Also Hamiltonian is constant of motion: $X_H H = 0$.
- Replace *P* by *H* in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - \circ Θ, Φ, *E*, *L*, *H* are constant along trajectories.
 - 1-PDF depends only on r, E, L, H.
- \Rightarrow Liouville equation becomes $\partial_r \phi = 0$.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- \Rightarrow Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{\chi}_i}H = \mathcal{L}_{\hat{\chi}_i}\phi = 0$ with

$$\hat{X} = X^a \partial_a - \bar{x}_b \partial_a X^b \bar{\partial}^a. \tag{7}$$

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - \circ Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on r, P, E, L.
 - Also Hamiltonian is constant of motion: $X_H H = 0$.
- Replace *P* by *H* in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - \circ Θ, Φ, *E*, *L*, *H* are constant along trajectories.
 - 1-PDF depends only on r, E, L, H.
- \Rightarrow Liouville equation becomes $\partial_r \phi = 0$.
- \Rightarrow Most general solution to static spherically symmetric gas: $\phi = \phi(E, L, H)$.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- \Rightarrow Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_i}H = \mathcal{L}_{\hat{X}_i}\phi = 0$ with

$$\hat{X} = X^a \partial_a - \bar{x}_b \partial_a X^b \bar{\partial}^a. \tag{7}$$

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - \circ Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on r, P, E, L.
- Also Hamiltonian is constant of motion: $X_H H = 0$.
- Replace *P* by *H* in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - \circ Θ, Φ, *E*, *L*, *H* are constant along trajectories.
 - 1-PDF depends only on r, E, L, H.
- \Rightarrow Liouville equation becomes $\partial_r \phi = 0$.
- \Rightarrow Most general solution to static spherically symmetric gas: $\phi = \phi(E, L, H)$.
- \sim Consider gas $\phi \sim \delta(E)\delta(L)\delta(H)$ of identical energy, angular momentum, mass.

Quantum corrected black hole

- Schwarzschild black hole:
 - Spherically symmetric spacetime.
 - Vacuum solution of Einstein's equations (general relativity).
 - Unique solution with these properties (Birkhoff theorem).

Quantum corrected black hole

- Schwarzschild black hole:
 - Spherically symmetric spacetime.
 - Vacuum solution of Einstein's equations (general relativity).
 - Unique solution with these properties (Birkhoff theorem).
- κ-Poincaré modification of spacetime:
 - o Interaction between particles and "quantum structure of spacetime".
 - Interaction depends on de Broglie wavelength (momentum).
 - → Distinguished time direction (vector field).
 - $\Rightarrow \kappa$ -Minkowski spacetime has modified symmetry algebra.
 - Black hole spacetime: assume spherically symmetric vector field.
 - ⇒ Vector field may only have time and radial components.
 - Modification depends on a parameter ℓ (Planck length).
 - \circ Spacetime approaches Schwarzschild for $\ell \to 0$.

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^a \bar{x}_a\right) + \frac{1}{2} e^{\ell Z^a \bar{x}_a} (g^{ab} + Z^a Z^b) \bar{x}_a \bar{x}_b. \tag{8}$$

• General κ -Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^a \bar{x}_a\right) + \frac{1}{2} e^{\ell Z^a \bar{x}_a} (g^{ab} + Z^a Z^b) \bar{x}_a \bar{x}_b. \tag{8}$$

Spacetime metric g_{ab}.

$$H = -\frac{2}{\ell^2} \sinh^2 \left(\frac{\ell}{2} \mathbf{Z}^a \bar{\mathbf{x}}_a \right) + \frac{1}{2} e^{\ell \mathbf{Z}^a \bar{\mathbf{x}}_a} (g^{ab} + \mathbf{Z}^a \mathbf{Z}^b) \bar{\mathbf{x}}_a \bar{\mathbf{x}}_b. \tag{8}$$

- Spacetime metric g_{ab}.
- Unit timelike vector field Z^a satisfying $Z^aZ^bg_{ab}=-1$.

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^a \bar{x}_a\right) + \frac{1}{2} e^{\ell Z^a \bar{x}_a} (g^{ab} + Z^a Z^b) \bar{x}_a \bar{x}_b. \tag{8}$$

- Spacetime metric g_{ab}.
- Unit timelike vector field Z^a satisfying $Z^aZ^bg_{ab}=-1$.
- Planck length ℓ.

$$H = -\frac{2}{\ell^2} \sinh^2 \left(\frac{\ell}{2} Z^a \bar{x}_a \right) + \frac{1}{2} e^{\ell Z^a \bar{x}_a} (g^{ab} + Z^a Z^b) \bar{x}_a \bar{x}_b.$$
 (8)

- Spacetime metric g_{ab}.
- Unit timelike vector field Z^a satisfying $Z^aZ^bg_{ab}=-1$.
- Planck length ℓ .
- \Rightarrow Static spherically symmetric case defined by functions a, b, c, d of r:

$$H = -\frac{2}{\ell^2} \sinh^2 \left[\frac{\ell}{2} (-cE + dP) \right] + \frac{1}{2} e^{\ell(-cE + dP)} \left[(-a + c^2)E^2 - 2cdEP + (b + d^2)P^2 + \frac{L^2}{r^2} \right].$$
 (9)

• General κ -Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^a \bar{x}_a\right) + \frac{1}{2} e^{\ell Z^a \bar{x}_a} (g^{ab} + Z^a Z^b) \bar{x}_a \bar{x}_b. \tag{8}$$

- Spacetime metric g_{ab}.
- Unit timelike vector field Z^a satisfying $Z^aZ^bg_{ab}=-1$.
- Planck length ℓ .
- \Rightarrow Static spherically symmetric case defined by functions a, b, c, d of r:

$$H = -\frac{2}{\ell^2} \sinh^2 \left[\frac{\ell}{2} (-cE + dP) \right] + \frac{1}{2} e^{\ell(-cE + dP)} \left[(-a + c^2)E^2 - 2cdEP + (b + d^2)P^2 + \frac{L^2}{r^2} \right].$$
 (9)

⇒ Minimal modification of Schwarzschild spacetime of mass M:

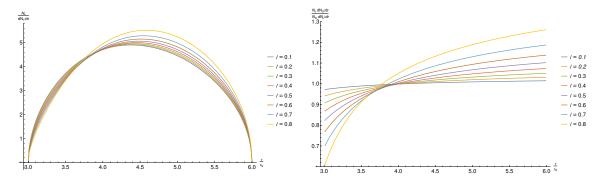
$$a^{-1} = b = c^{-2} = 1 - \frac{2M}{r}, \quad d = 0.$$
 (10)

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy *E* such that particles are gravitationally bound.

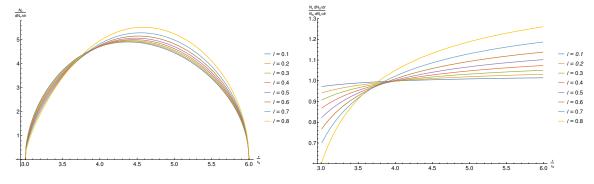
- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy *E* such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy *E* such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.
- Calculate number of trajectories through time slice σ with R < r < R + dr.

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy *E* such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.
 - Calculate number of trajectories through time slice σ with R < r < R + dr.
 - Plot (inverse of) relative particle density N/(dN/dr):



- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy *E* such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.
 - Calculate number of trajectories through time slice σ with R < r < R + dr.
 - Plot (inverse of) relative particle density N/(dN/dr):



 $\Rightarrow \kappa$ -Poincaré modification shifts particles inward.

Example: radial free fall from infinity

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).

Example: radial free fall from infinity

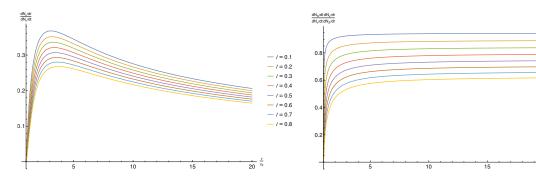
- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.

Example: radial free fall from infinity

- Properties of particle ensemble:
 - o Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.
- Calculate number of trajectories through time slice σ with R < r < R + dr.

Example: radial free fall from infinity

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.
- Calculate number of trajectories through time slice σ with R < r < R + dr.
- Plot particle density dN/dr per flow rate dN/dt:



--/=0.1

- /=0.2

— / = 0.3

-/=0.4

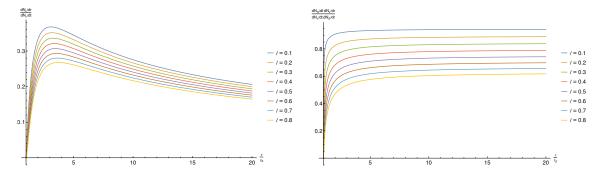
-/=0.5

- / = 0.7

— / = 0.8

Example: radial free fall from infinity

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.
- Calculate number of trajectories through time slice σ with R < r < R + dr.
- Plot particle density dN/dr per flow rate dN/dt:



 $\Rightarrow \kappa$ -Poincaré modification decreases particle density.

Overview

1. Motivation

- 2. Kinetic gases in Finsler geometry
- 3. Cosmology
- 4. Conclusion

Cosmological symmetry

• Introduce suitable coordinates on *TM*:

$$t, r, \theta, \varphi, y^t, y^r, y^\theta, y^\varphi$$
.

Cosmological symmetry

• Introduce suitable coordinates on *TM*:

$$t, r, \theta, \varphi, y^t, y^r, y^\theta, y^\varphi$$
.

Most general Finsler function obeying cosmological symmetry:

$$F = F(t, y^t, w), \quad w^2 = \frac{(y^r)^2}{1 - kr^2} + r^2 \left((y^\theta)^2 + \sin^2 \theta (y^\varphi)^2 \right).$$

• Homogeneity of Finsler function $F(t, y^t, w) = y^t f(t, w/y^t)$.

Cosmological symmetry

Introduce suitable coordinates on TM:

$$t, r, \theta, \varphi, y^t, y^r, y^\theta, y^\varphi$$
.

Most general Finsler function obeying cosmological symmetry:

$$F = F(t, y^t, w), \quad w^2 = \frac{(y^r)^2}{1 - kr^2} + r^2 \left((y^\theta)^2 + \sin^2 \theta (y^\varphi)^2 \right).$$

- Homogeneity of Finsler function $F(t, y^t, w) = y^t f(t, w/y^t)$.
- Introduce new coordinates: $\tilde{y} = y^t f(t, w/y^t)$, $s = w/y^t$.
- \Rightarrow Coordinates on observer space O with $\tilde{y} \equiv 1$.
- \Rightarrow Geometry function f(t, s) on O.

Cosmological fluid dynamics

Most general fluid obeying cosmological symmetry:

$$\phi = \phi(t, s)$$
.

Cosmological fluid dynamics

Most general fluid obeying cosmological symmetry:

$$\phi = \phi(t, s)$$
.

Collisionless fluid satisfies Liouville equation [MH 115]:

$$0 = \mathcal{L}_{\mathbf{r}}\phi = \frac{1}{f} \left(\partial_t \phi - \frac{\partial_t \partial_s f}{\partial_s^2 f} \partial_s \phi \right) .$$

Cosmological fluid dynamics

Most general fluid obeying cosmological symmetry:

$$\phi = \phi(t, s)$$
.

Collisionless fluid satisfies Liouville equation [MH 115]:

$$0 = \mathcal{L}_{\mathbf{r}}\phi = \frac{1}{f} \left(\partial_t \phi - \frac{\partial_t \partial_s f}{\partial_s^2 f} \partial_s \phi \right) .$$

• Example: collisionless dust fluid $\phi(x, y) \sim \rho(x)\delta_{S_x}(y, u(x))$:

$$u(t) = \frac{1}{f(t,0)} \partial_t, \quad \partial_t \left(\rho(t) \sqrt{g^F(t,0)} \right) = 0.$$

• Slowly moving kinetic gas: $\phi(t, s)$ concentrated around s = 0.

- Slowly moving kinetic gas: $\phi(t, s)$ concentrated around s = 0.
- High velocity limit: $\lim_{s\to 1} \phi(t,s) = 0$.

- Slowly moving kinetic gas: $\phi(t, s)$ concentrated around s = 0.
- High velocity limit: $\lim_{s\to 1} \phi(t,s) = 0$.
- Expanding universe leads to cooling.

- Slowly moving kinetic gas: $\phi(t, s)$ concentrated around s = 0.
- High velocity limit: $\lim_{s\to 1} \phi(t,s) = 0$.
- Expanding universe leads to cooling.
- ⇒ Possible to decompose gravity equation with source:

$$\phi(t,s) = \sum_{k=0}^{\infty} \frac{1}{k!} \phi_k(t) s^k.$$

- Slowly moving kinetic gas: $\phi(t, s)$ concentrated around s = 0.
- High velocity limit: $\lim_{s\to 1} \phi(t,s) = 0$.
- Expanding universe leads to cooling.
- ⇒ Possible to decompose gravity equation with source:

$$\phi(t,s) = \sum_{k=0}^{\infty} \frac{1}{k!} \phi_k(t) s^k.$$

⇒ Study Finsler function given by Taylor series:

$$f(t,s) = \sum_{k=0}^{\infty} \frac{1}{k!} f_k(t) s^k.$$

Open question: Cauchy surfaces for Finsler gravity dynamics?

- Open question: Cauchy surfaces for Finsler gravity dynamics?
- Idea: consider globally hyperbolic spacetime $M = Q \times \mathbb{R}$.

- Open question: Cauchy surfaces for Finsler gravity dynamics?
- Idea: consider globally hyperbolic spacetime $M = Q \times \mathbb{R}$.
- Embedded hypersurface: graph of function $u: Q \to \mathbb{R}$.

- Open question: Cauchy surfaces for Finsler gravity dynamics?
- Idea: consider globally hyperbolic spacetime $M = Q \times \mathbb{R}$.
- Embedded hypersurface: graph of function $u: Q \to \mathbb{R}$.
- Q equipped with positive definite Finsler function $W: TQ \to \mathbb{R}^+$.

- Open question: Cauchy surfaces for Finsler gravity dynamics?
- Idea: consider globally hyperbolic spacetime $M = Q \times \mathbb{R}$.
- Embedded hypersurface: graph of function $u: Q \to \mathbb{R}$.
- Q equipped with positive definite Finsler function $W: TQ \to \mathbb{R}^+$.
- Ansatz for Finsler function on M as $F^2 = -\overline{t}^2 + f^2(t)W(v)$.

- Open question: Cauchy surfaces for Finsler gravity dynamics?
- Idea: consider globally hyperbolic spacetime $M = Q \times \mathbb{R}$.
- Embedded hypersurface: graph of function $u: Q \to \mathbb{R}$.
- *Q* equipped with positive definite Finsler function $W: TQ \to \mathbb{R}^+$.
- Ansatz for Finsler function on M as $F^2 = -\overline{t}^2 + f^2(t)W(v)$.
- ⇒ Normal vector $n \in TM$ determined by Legendre transformation.

- Open question: Cauchy surfaces for Finsler gravity dynamics?
- Idea: consider globally hyperbolic spacetime $M = Q \times \mathbb{R}$.
- Embedded hypersurface: graph of function $u: Q \to \mathbb{R}$.
- *Q* equipped with positive definite Finsler function $W: TQ \to \mathbb{R}^+$.
- Ansatz for Finsler function on M as $F^2 = -\overline{t}^2 + f^2(t)W(v)$.
- ⇒ Normal vector $n \in TM$ determined by Legendre transformation.
- $\Rightarrow g^F(n)$ determines Riemannian metric on Q.

- Open question: Cauchy surfaces for Finsler gravity dynamics?
- Idea: consider globally hyperbolic spacetime $M = Q \times \mathbb{R}$.
- Embedded hypersurface: graph of function $u: Q \to \mathbb{R}$.
- *Q* equipped with positive definite Finsler function $W: TQ \to \mathbb{R}^+$.
- Ansatz for Finsler function on M as $F^2 = -\overline{t}^2 + f^2(t)W(v)$.
- ⇒ Normal vector $n \in TM$ determined by Legendre transformation.
- $\Rightarrow g^F(n)$ determines Riemannian metric on Q.
- Determine mean curvature flow and Cauchy hypersurface property.

Overview

1. Motivation

- 2. Kinetic gases in Finsler geometry
- 3. Cosmology
- 4. Conclusion

Conclusion

Summary:

- ∮ Fundamental theory of quantum gravity is unknown.
- ⇒ Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- \circ κ -Poincaré modification changes matter density near black hole.

Conclusion

Summary:

- ∮ Fundamental theory of quantum gravity is unknown.
- ⇒ Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- \circ κ -Poincaré modification changes matter density near black hole.

Outlook:

- Consider more general quantum corrections.
- Consider spinning black holes.
- Consider more general gases or matter distributions with less symmetry:
 - Accretion disks and jets → blazars.
 - Tidal disruption events.
 - · Stellar wake of passing black hole and dynamical friction.
- Derive observable properties of black holes, quasars, AGN...

Conclusion

Summary:

- ∮ Fundamental theory of quantum gravity is unknown.
- ⇒ Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- \circ κ -Poincaré modification changes matter density near black hole.

Outlook:

- Consider more general quantum corrections.
- Consider spinning black holes.
- Consider more general gases or matter distributions with less symmetry:
 - Accretion disks and jets → blazars.
 - Tidal disruption events.
 - · Stellar wake of passing black hole and dynamical friction.
- o Derive observable properties of black holes, quasars, AGN...
- MH, "Kinetic gases in static spherically symmetric modified dispersion relations," Class. Quant. Grav. 41 (2024) no.1, 015025 [arXiv:2310.01487 [gr-qc]].