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The ACDM model of cosmology

@ 4.6% visible matter.

[Komatsu et al. '09]
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The ACDM model of cosmology

@ 4.6% visible matter.
[Komatsu et al. '09]
@ 22.8% dark matter?
o Galaxy rotation curves.
[de Blok, Bosma '02]
o Anomalous light deflection.
[Wambsganss "98]
@ 72.6% dark energy?

o Accelerating expansion.
[Riess et al. '98; Perlmutter et al. ‘98]

= Problem: What are dark matter and dark energy?
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Explanations for the dark universe

@ Particle physics:
o Dark matter: [Bertone, Hooper, Silk '05]
@ Weakly interacting massive particles (WIMPS). [Elis et al. '84]
@ Axions. [Preskill, Wise, Wilczek '83]
@ Massive compact halo objects (MACHOS). [Paczynski gé]
o Dark energy: [Copeland, Sami, Tsujikawa '06]
@ Quintessence. [Peebles, Ratra '88]
@ K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
@ Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]
@ Gravity:
Modified Newtonian dynamics (MOND). piigrom ‘3]
Tensor-vector-scalar theories. [gekenstein 04
Curvature corrections. [schuller, Wohlfarth ‘05; Sotiriou, Faraoni '05]
Dvali-Gabadadze-Porrati (DGP) model. [pvali, Gabadadze, Porrati 00, Lue 0]
Non-symmetric gravity. (voftat '95]
Area metric gravity. (punzi, Schuller, Wohlfarth '07]
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Explanations for the dark universe

@ Particle physics:
o Dark matter: [Bertone, Hooper, Silk '05]
@ Weakly interacting massive particles (WIMPS). [Elis et al. '84]
@ Axions. [Preskill, Wise, Wilczek '83]
@ Massive compact halo objects (MACHOS). [Paczynski gé]
o Dark energy: [Copeland, Sami, Tsujikawa '06]
@ Quintessence. [Peebles, Ratra '88]
@ K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
@ Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]
@ Gravity:
Modified Newtonian dynamics (MOND). piigrom ‘3]
Tensor-vector-scalar theories. [gekenstein 04
Curvature corrections. [schuller, Wohlfarth ‘05; Sotiriou, Faraoni '05]
Dvali-Gabadadze-Porrati (DGP) model. [pvali, Gabadadze, Porrati 00, Lue 0]
Non-symmetric gravity. (voftat '95]
Area metric gravity. (punzi, Schuller, Wohlfarth '07]
New idea: repulsive gravity < negative mass!
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Mass in Newtonian gravity

@ Three types of mass! (sondi 57,
e Active gravitational mass m, - source of gravity: ¢ = —Gy 2.
o Passive gravitational mass m, - reaction on gravity: F = —m,ﬁgb.
e Inertial mass m; - relates force to acceleration: F = ma.
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e Active gravitational mass m, - source of gravity: ¢ = —Gy 2.
o Passive gravitational mass m, - reaction on gravity: F = —m,ﬁgb.
e Inertial mass mj - relates force to acceleration: F = m;a.
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Mass in Newtonian gravity

@ Three types of mass! (sondi 57,
e Active gravitational mass m, - source of gravity: ¢ = —Gy 2.
o Passive gravitational mass m, - reaction on gravity: F = —m,ﬁgb.
e Inertial mass m; - relates force to acceleration: F = ma.
@ Theory relates the different types of mass:
e Momentum conservation: my ~ mp.
o Weak equivalence principle: m, ~ m;.
@ my ~ mp ~ m; experimentally confirmed.
@ Gravity is always attractive.
@ Convention: unit ratios and signs such that m; = mp, = m; > 0.

@ Observations exist for visible matter only.
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Dark universe from negative mass

@ |dea for dark universe: standard model with m; = mp, = —m; < 0.
@ Both copies couple only through gravity = “dark”.

= Preserves momentum conservation.

= Breaks weak equivalence principle only for cross-interaction.
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Dark universe from negative mass

@ |dea for dark universe: standard model with m; = mp, = —m; < 0.
@ Both copies couple only through gravity = “dark”.
= Preserves momentum conservation.
= Breaks weak equivalence principle only for cross-interaction.

@ Explanation of dark matter.

@ Explanation of dark energy. % =@
— Advantage: Dark copy W~ of = 7>
well-known standard model W: 7 > é?
Ny N

o No new parameters.

@ No unknown masses. r\\“(-,_?

@ No unknown couplings. =
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Repulsive Einstein gravity

@ Positive and negative test masses follow different trajectories.

@ Two types of test mass trajectories = two types of observers.

@ Observer trajectories are autoparallels of two connections V*.
@ Observers attach parallely transported frames to their curves.

@ Frames are orthonormalized using two metric tensors gaib.
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Repulsive Einstein gravity

@ Positive and negative test masses follow different trajectories.

@ Two types of test mass trajectories = two types of observers.

@ Observer trajectories are autoparallels of two connections V*.
@ Observers attach parallely transported frames to their curves.

@ Frames are orthonormalized using two metric tensors gaib.

@ No-go theorem forbids bimetric repulsive gravity. s, m. wonitartn 0g)

@ Solution: N > 3 metrics g/, and standard model copies V'
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e Multimetric gravity
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Construction principles

1. N > 3 copies of standard model matter W/, /=1,..., N.
2. N metric tensors g!,.
3. Each standard model copy ¥/ couples only to its metric g'.

= Sulg' = [ dx/g'tuld! V1.

4. Different sectors couple only gravitationally.

N
= S=8glg".....g"+>_ Sulg'. V.
1=1

5. Field equations contain at most second derivatives of the metrics.
6. Symmetric with respect to permutations of the sectors (g, V/).

Manuel Hohmann (Uni Hamburg) Repulsive gravity & cosmology FAC 2011 10/31



Action and equations of motion

@ Gravitational action:

N
1 )
Salg',....g" = 2/d4X\/§TO [Z(X+y5”)g’”ﬁf7+F(S"’) -
1,J=1

@ Symmetric volume form gy = (g'g?...g")"/N.
@ F(SV) quadratic in connection difference tensors SV =T/ — Y.
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Action and equations of motion

@ Gravitational action:

N
1 iy
SG[g1a"'agN] = 2/d4X\/%[ E (X+y5l‘j)gl’/R’tj/+F(SlJ)] )
1,J=1

@ Symmetric volume form gy = (g'g?...g")"/N.
@ F(S"¥) quadratic in connection difference tensors S¥ =/ — .
= Equations of motion:

N N
1 )
Top = f}? _Wgéb > (x+ys?)gTR G+ (x + y5U)RJab]
J K= J—

+ terms linear in V'8’
+ terms quadratic in SV .

= Repulsive Newtonian limit for N > 3.
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e Multimetric cosmology
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Cosmological symmetry

@ Standard cosmology: Robertson—Walker metrics
I 2 o o B
g = —nj(t)dt ® dt + aj(t)yapdx® @ dx” .
e Lapse functions n.
e Scale factors a;.

e Spatial metric v, of constant curvature k € {—1,0,1} and
Riemann tensor R(Y)ass = 2KValyVs)5-

@ Perfect fluid matter:
Tlab — (Pl + p,)u’au’b + plglab‘

e Normalization: g, u@u®® = —1.
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Simple cosmological model

@ Early universe: radiation; late universe: dust.
@ Copernican principle: common evolution for all matter sectors.
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Simple cosmological model

@ Early universe: radiation; late universe: dust.
@ Copernican principle: common evolution for all matter sectors.
= Single effective energy-momentum tensor Ta’b = Tap-
. . . l _
Single effective metric g, = gap.
Common scale factors a’ = a and lapse functions n' = n.

Ricci tensors R!, = R, become equal.

=
=

= Rescale cosmological time to set n=1.
=

= Connection differences S¥/j = 0 vanish.
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Simple cosmological model

@ Early universe: radiation; late universe: dust.
@ Copernican principle: common evolution for all matter sectors.
= Single effective energy-momentum tensor Ta’b = Tap.
Single effective metric g/, = gap.
Common scale factors a’ = a and lapse functions n' = n.
Rescale cosmological time to set n = 1.

Connection differences S¥/; = 0 vanish.

=
=

=

= Ricci tensors R, = Rz, become equal.

=

= Equations of motion simplify for repulsive Newtonian limit:

1
(2—=N)Tap = Rap — éRgab-

= Negative effective gravitational constant for early / late universe.
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Cosmological equations of motion

@ Insert Robertson—Walker metric into equations of motion:
__3 (& Kk
P=o- N\ a2)
P==2"n\"aT2"2)

= Positive matter density p > 0 requires k = —1 and & < 1.
= No solutions for k =0 or k = 1.
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Accelerating expansion

@ Acceleration equation:

a N-2
E—T(P+3P)-

@ Factor N — 2 > 0 for multimetric gravity.
@ Strong energy condition

(Tab - %Tgab) 2P > 0

for all timelike vector fields t2 implies p + 3p > 0.
= Acceleration must be positive.
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Explicit solution
@ Equation of state: p = wp; dust: w = 0, radiation: w = 1/3.

@ General solution using conformal time 7 defined by dt = adn:

1 o
a=a (cosh <3w2+ (n— 770))) o
6w+6

p= (/\/—32)a§ <Cosh <3w2+ ! (n _770)>>—3w+1 :

P

a
ao

15¢

t
5 10 15 @

15 -0 -5
= Big bounce at 1 = 1g. H, m. wonitarth “10]
Repulsive gravity & cosmology FAC 2011 17/31
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@ simulation of structure formation
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Ingredients

1. Metrics g, = g%, + hl, with
9° = —dt @ dt + & (t)Yasdx® ® dx”

and a(t) determined by cosmology.
2. Scale for structure formation <« curvature radius of the universe:
@ Cubic volume 0 < x> < /.
o Approximate v,3 by dq.
e Periodic boundary conditions.
3. Matter content: n point masses M for each sector.

e Model for dust matter: p = 0.
o Matter density:

4. Large mean distance a//v/Nn > 2GM.
5. Small velocities |v}| = |axj| < 1.

Manuel Hohmann (Uni Hamburg) Repulsive gravity & cosmology FAC 2011



Evolution of structures for all matter types

o N=4.
@ n= 16384.

@ 7.5days
CPU time.
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Final state for one matter type

@ Galactic
clusters.

@ Empty voids.
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e Solar system consistency
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Physical situation in the solar system

@ Consider only repulsive gravity between different sectors.

= Different matter types should separate.

= Energy-momentum tensor contains only visible matter:
= TL=T,#0.
= T,=T4=...=T)=0.
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Physical situation in the solar system

@ Consider only repulsive gravity between different sectors.

= Different matter types should separate.
= Energy-momentum tensor contains only visible matter:

= Tjh=Ty#0.
= T,=T4=...=T)=0.
@ Permutation symmetry between sectors.
= Visible matter has equal effects on all dark sectors.

= Metric:
= gh= géb- y
= O =Yab=--- = Gab-
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Parametrized post-Newtonian formalism

@ Characterize single-metric gravity theories by 10 parameters.

[Thorne, Will '71; Will '93]
@ 2 parameters can be obtained from linearized field equations.
@ Values constrained by experiment, e.g., vy =1+ 2.3-1075.
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Parametrized post-Newtonian formalism

@ Characterize single-metric gravity theories by 10 parameters.
[Thorne, Will '71; Will '93]

@ 2 parameters can be obtained from linearized field equations.
Values constrained by experiment, e.g., vy =1+ 2.3-1075.

Extension of PPN formalism for multimetric gravity theories.
[MH, M. Wohlfarth *10]

Extended set of 26 PPN parameters.
8 parameters can be obtained from linearized field equations.

10 parameters correspond to single-metric parameters =
experimentally measured.
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PPN consistent theory

@ Consider gravitational action of the form:

N N
1 i I
Sg = 2/d”‘x\/go /5_1 gl [ZSIKSIK/‘]' +uS";8 + J§_1(X+y5’J)R,-f] .

@ Parameters in the action:

A 4-N 4-N 12— 3N
“8_an' 7V

* 84N’ ‘T 8-4anN’ T T E—4N-

= PPN parameters from linearized formalism:

e a™ =1, 6% = 0: standard PPN gauge choice.

e v =1, 0l = —2: experimental consistency.

e a~ = —1: repulsive Newtonian limit.

e v~ =-1,07 =0, 0 = 2: additional “dark” PPN parameters.
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@ Gravitational waves

Manuel Hohmann (Uni Hamburg) Repulsive gravity & cosmology FAC 2011 26/31



Propagation velocity

@ Write linearized vacuum field equations as:

N
I cdpd
Z D ab th — o .
J=1

Differential operator D.
Consider wavelike solution:

I pl0 Sikax?@
hab_habea :

Multiplication operator D.

@ Non-vanishing solution require zero eigenvalue of D.
detD o (k2ky)'°.

= Solutions exist only for k%k,; = 0.

= Gravitational waves are null.
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Polarization and E(2) class

@ Up to 6 polarizations in general metric theories.
@ Theories classified by representations of E(2).
@ E(2) class of multimetric gravity depends on 3 parameters:

P+2R M
=0 #0 fo/ =0
N, < T, Il o Tl
2 tensors +1 scalar +2 vectors +1 scalar

@ PPN consistent theory shown before of class No.
= Same class as general relativity.
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e Conclusion
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@ ACDM model describes our universe.
@ Constituents of dark matter & dark energy are unknown.
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ACDM model describes our universe.

Constituents of dark matter & dark energy are unknown.

Idea here: Dark universe might be explained by repulsive gravity.
Repulsive gravity requires an extension of general relativity.
No-go theorem: bimetric repulsive gravity is not possible.
Multimetric repulsive gravity with N > 3 by explicit construction.
Cosmology features late-time acceleration and big bounce.
Structure formation features clusters and voids.

Repulsive gravity is consistent with solar system experiments.
Gravitational waves are null.

P44 401U o 06
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Remaining PPN parameters should be determined from full
multimetric PPN formalism.

Restrict multimetric gravity theories by additional PPN bounds.

Establish further construction principles, e.g., continuous
symmetry between sectors.

Examine initial-value problem.

Determine further exact solutions (single point mass. . .).
Advanced simulation of structure formation including
thermodynamics using GADGET-2 (Millenium Simulation).

Search for repulsive gravity sources in the galactic voids through
gravitational lensing.

Application to binaries: gravitational radiation should be emitted in
all sectors, but only one type is visible.
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Remaining PPN parameters should be determined from full
multimetric PPN formalism.

Restrict multimetric gravity theories by additional PPN bounds.

Establish further construction principles, e.g., continuous
symmetry between sectors.

Examine initial-value problem.

Determine further exact solutions (single point mass. . .).
Advanced simulation of structure formation including
thermodynamics using GADGET-2 (Millenium Simulation).

Search for repulsive gravity sources in the galactic voids through
gravitational lensing. Prediction!

Application to binaries: gravitational radiation should be emitted in
all sectors, but only one type is visible. Prediction!
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