Repulsive gravity model for dark energy

Manuel Hohmann

II. Institut für theoretische Physik

DPG-Tagung Karlsruhe 2011

• ACDM model: only 5% visible matter.

- Dark matter explains "missing mass" in galaxies.
- Dark energy explains accelerating expansion.
- Constituents of dark universe are unknown!

- ACDM model: only 5% visible matter.
 - Dark matter explains "missing mass" in galaxies.
 - Dark energy explains accelerating expansion.
 - Constituents of dark universe are unknown!
- Idea here: Additional "dark, negative mass" standard model copy.
- Only interaction between both copies: repulsive gravity.
- Universe contains equal amounts of both types of mass.

- ACDM model: only 5% visible matter.
 - Dark matter explains "missing mass" in galaxies.
 - Dark energy explains accelerating expansion.
 - Constituents of dark universe are unknown!
- Idea here: Additional "dark, negative mass" standard model copy.
- Only interaction between both copies: repulsive gravity.
- Universe contains equal amounts of both types of mass.
- Dark galaxies "push" visible matter & light towards visible galaxies.
 ⇒ Explanation of dark matter!
- Mutual repulsion between galaxies drives accelerating expansion.
 ⇒ Explanation of dark energy!

- Positive and negative test masses follow different trajectories.
- Two types of test mass trajectories \Rightarrow two types of observers.
- Observer trajectories are autoparallels of two connections ∇[±].
- Observers attach parallely transported frames to their curves.
- Frames are orthonormalized using two metric tensors g[±]_{ab}.

- Positive and negative test masses follow different trajectories.
- Two types of test mass trajectories \Rightarrow two types of observers.
- Observer trajectories are autoparallels of two connections ∇[±].
- Observers attach parallely transported frames to their curves.
- Frames are orthonormalized using two metric tensors g_{ab}^{\pm} .
- No-go theorem forbids bimetric repulsive gravity. [MH, M. Wohlfarth '09]
- Solution: $N \ge 3$ metrics g_{ab}^{l} and standard model copies Ψ^{l} .

Action and equations of motion

- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1, ..., g^N] = rac{1}{2} \int d^4 x \sqrt{g_0} \left[\sum_{l,J=1}^N (x + y \delta^{lJ}) g^{lij} R^J_{ij} + F(S^{lJ})
ight]$$

- Symmetric volume form $g_0 = (g^1 g^2 \dots g^N)^{1/N}$.
- $F(S^{IJ})$ quadratic in connection difference tensors $S^{IJ} = \Gamma^{I} \Gamma^{J}$.

Action and equations of motion

- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1, \dots, g^N] = rac{1}{2} \int d^4 x \sqrt{g_0} \left[\sum_{I,J=1}^N (x + y \delta^{IJ}) g^{Iij} R^J_{ij} + F(S^{IJ})
ight]$$

• Symmetric volume form $g_0 = (g^1 g^2 \dots g^N)^{1/N}$.

• $F(S^{IJ})$ quadratic in connection difference tensors $S^{IJ} = \Gamma^{I} - \Gamma^{J}$. \Rightarrow Equations of motion:

$$T_{ab}^{I} = \sqrt{\frac{g_0}{g^{I}}} \left[-\frac{1}{2N} g_{ab}^{I} \sum_{J,K=1}^{N} (x + y\delta^{JK}) g^{Jij} R_{ij}^{K} + \sum_{J=1}^{N} (x + y\delta^{JJ}) R_{ab}^{J} \right]$$

+ terms linear in $\nabla^{I} S^{JK}$

+ terms quadratic in S^{IJ} .

⇒ Repulsive Newtonian limit for $N \ge 3$.

Simple cosmological model

- Homogeneous and isotropic universe (FLRW metric).
- Matter content: perfect fluid.
- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.

Simple cosmological model

- Homogeneous and isotropic universe (FLRW metric).
- Matter content: perfect fluid.
- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
- \Rightarrow Single effective energy-momentum tensor $T'_{ab} = T_{ab}$.
- \Rightarrow Single effective metric $g_{ab}^{\prime} = g_{ab}$.
- \Rightarrow Ricci tensors $R_{ab}^{l} = R_{ab}$ become equal.
- \Rightarrow Connection differences $S^{IJi}_{jk} = 0$ vanish.

Simple cosmological model

- Homogeneous and isotropic universe (FLRW metric).
- Matter content: perfect fluid.
- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
- \Rightarrow Single effective energy-momentum tensor $T'_{ab} = T_{ab}$.
- \Rightarrow Single effective metric $g_{ab}^{\prime} = g_{ab}$.
- \Rightarrow Ricci tensors $R_{ab}^{l} = R_{ab}$ become equal.
- \Rightarrow Connection differences $S^{IJi}_{jk} = 0$ vanish.
- \Rightarrow Equations of motion simplify for repulsive Newtonian limit:

$$(2-N)T_{ab}=R_{ab}-\frac{1}{2}Rg_{ab}.$$

 \Rightarrow Negative effective gravitational constant for early / late universe.

Multimetric cosmology

• Derive cosmological equations of motion:

$$\frac{\ddot{a}}{a}=rac{N-2}{6}\left(
ho+3
ho
ight).$$

 \Rightarrow Acceleration must be positive.

Multimetric cosmology

Derive cosmological equations of motion:

$$\frac{\ddot{a}}{a}=\frac{N-2}{6}\left(\rho+3\rho\right).$$

- \Rightarrow Acceleration must be positive.
 - Explicit solution for radiation (dashed) / dust (solid):

⇒ Big bounce. [MH, M. Wohlfarth '10]

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

matter types separate.

• N=4. Different

•

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

• *N* = 4.

 Different matter types separate.

Video: www.desy.de/ mhohmann

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

Galactic clusters.

Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

Galactic

clusters.Empty voids.

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Manuel Hohmann (Uni Hamburg)

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

- Galactic clusters.
- Empty voids.

Video: www.desy.de/ mhohmann

Parametrized post-Newtonian formalism

- Obtain "fingerprint" of single-metric gravity theories. [Thorne, Will '71; Will '93]
- \Rightarrow 10 parameters, constrained by solar system experiments.

Parametrized post-Newtonian formalism

- Obtain "fingerprint" of single-metric gravity theories. [Thorne, Will '71; Will '93]
- \Rightarrow 10 parameters, constrained by solar system experiments.
- Extension to multimetric gravity theories. [MH, M. Wohlfarth '10]
- \Rightarrow Additional 14 unobserved parameters.
- \Rightarrow 8 parameters can be obtained from linearized field equations.

Parametrized post-Newtonian formalism

- Obtain "fingerprint" of single-metric gravity theories. [Thorne, Will '71; Will '93]
- \Rightarrow 10 parameters, constrained by solar system experiments.
 - Extension to multimetric gravity theories. [MH, M. Wohlfarth '10]
- \Rightarrow Additional 14 unobserved parameters.
- \Rightarrow 8 parameters can be obtained from linearized field equations.
- Example: action can be chosen such that
 - $\alpha^+ = 1$, $\theta^+ = 0$: standard PPN gauge choice.
 - $\gamma^+ = 1$, $\sigma^+_+ = -2$: experimental consistency.
 - $\alpha^- = -1$: repulsive Newtonian limit.
 - $\gamma^{-} = -1$, $\theta^{-} = 0$, $\sigma^{-}_{+} = 2$: additional "dark" PPN parameters.

 \Rightarrow Consistent with solar system experiments up to linear PPN order.

Gravitational waves

- Propagation velocity equals speed of light.
- Up to 6 polarizations in general metric theories.
- Theories classified by representations of E(2).
- E(2) class of multimetric gravity depends on 3 parameters:

- PPN consistent theory shown before of class N₂.
- \Rightarrow Same class as general relativity.

- Idea: Repulsive gravity might explain dark matter & dark energy.
- \Rightarrow General relativity must be extended to allow repulsive gravity.
- \Rightarrow No-go theorem: bimetric repulsive gravity is not possible.
- ⇒ Multimetric repulsive gravity with $N \ge 3$ by explicit construction.
- \Rightarrow Cosmology features late-time acceleration and big bounce.
- \Rightarrow Structure formation features clusters and voids.
- \Rightarrow Repulsive gravity is consistent with solar system experiments.
- \Rightarrow Gravitational waves are null.
- $\Rightarrow~$ E(2) class can be one of $\rm N_2,\,N_3,\,III_5,\,II_6.$

Outlook

- Remaining PPN parameters should be determined from full multimetric PPN formalism.
- Restrict multimetric gravity theories by additional PPN bounds.
- Establish further construction principles, e.g., continuous symmetry between sectors.
- Examine initial-value problem.
- Determine further exact solutions (single point mass...).
- Advanced simulation of structure formation including thermodynamics using GADGET-2 (Millenium Simulation).
- Search for repulsive gravity sources in the galactic voids through gravitational lensing.
- Application to binaries: gravitational radiation should be emitted in all sectors, but only one type is visible.

Outlook

- Remaining PPN parameters should be determined from full multimetric PPN formalism.
- Restrict multimetric gravity theories by additional PPN bounds.
- Establish further construction principles, e.g., continuous symmetry between sectors.
- Examine initial-value problem.
- Determine further exact solutions (single point mass...).
- Advanced simulation of structure formation including thermodynamics using GADGET-2 (Millenium Simulation).
- Search for repulsive gravity sources in the galactic voids through gravitational lensing. Prediction!
- Application to binaries: gravitational radiation should be emitted in all sectors, but only one type is visible. Prediction!