Aspects of multimetric gravity

Manuel Hohmann

Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool

4. september 2012

Outline

Introduction

- Multimetric cosmology
- Simulation of structure formation
- Post-Newtonian consistency
- 5 Gravitational waves

Outline

Introduction

- 2 Multimetric cosmology
- 3 Simulation of structure formation
- 4 Post-Newtonian consistency
- 5 Gravitational waves
- 6 Conclusion

Einstein gravity

- Gravity is described by metric tensor *g*_{ab}.
- Einstein-Hilbert action:

$$S_G = rac{1}{2} \int \omega R$$
 .

- Volume form ω .
- Scalar curvature R.
- Minimally coupled matter action:

$$S_M = \int \omega \mathcal{L}_M$$
 .

• Einstein equations:

$$R_{ab}-rac{1}{2}Rg_{ab}=T_{ab}$$
 .

• 4.6% visible matter.

[Komatsu et al. '09]

4.6% visible matter.

[Komatsu et al. '09]

• 22.8% dark matter.

Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.

[Wambsganss '98]

4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
 - Galaxy rotation curves.

[de Blok, Bosma '02]

• Anomalous light deflection.

[Wambsganss '98]

4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
 - Galaxy rotation curves.

[de Blok, Bosma '02]

• Anomalous light deflection.

[Wambsganss '98]

4.6% visible matter.

[Komatsu et al. '09]

22.8% dark matter.

Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.

[Wambsganss '98]

- 72.6% dark energy.
 - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]

4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
 - Galaxy rotation curves.

[de Blok, Bosma '02]

• Anomalous light deflection.

[Wambsganss '98]

- 72.6% dark energy.
 - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]

4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
 - Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.

[Wambsganss '98]

- 72.6% dark energy.
 - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]

4.6% visible matter.

[Komatsu et al. '09]

22.8% dark matter?

Galaxy rotation curves.

[de Blok, Bosma '02]

• Anomalous light deflection.

[Wambsganss '98]

- 72.6% dark energy?
 - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]

\Rightarrow Problem: What are dark matter and dark energy?

Explanations for the dark universe

• Particle physics:

- Dark matter: [Bertone, Hooper, Silk '05]
 - Weakly interacting massive particles (WIMPs). [Ellis et al. '84]
 - Axions. [Preskill, Wise, Wilczek '83]
 - Massive compact halo objects (MACHOs). [Paczynski '86]
- Dark energy: [Copeland, Sami, Tsujikawa '06]
 - Quintessence. [Peebles, Ratra '88]
 - K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
 - Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]
- Gravity:
 - Modified Newtonian dynamics (MOND). [Milgrom '83]
 - Tensor-vector-scalar theories. [Bekenstein '04]
 - Curvature corrections. [Schuller, Wohlfarth '05; Sotiriou, Faraoni '05]
 - Dvali-Gabadadze-Porrati (DGP) model. [Dvali, Gabadadze, Porrati '00, Lue '06]
 - Non-symmetric gravity. [Moffat '95]
 - Area metric gravity. [Punzi, Schuller, Wohlfarth '07]

Explanations for the dark universe

• Particle physics:

- Dark matter: [Bertone, Hooper, Silk '05]
 - Weakly interacting massive particles (WIMPs). [Ellis et al. '84]
 - Axions. [Preskill, Wise, Wilczek '83]
 - Massive compact halo objects (MACHOs). [Paczynski '86]
- Dark energy: [Copeland, Sami, Tsujikawa '06]
 - Quintessence. [Peebles, Ratra '88]
 - K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
 - Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]
- Gravity:
 - Modified Newtonian dynamics (MOND). [Milgrom '83]
 - Tensor-vector-scalar theories. [Bekenstein '04]
 - Curvature corrections. [Schuller, Wohlfarth '05; Sotiriou, Faraoni '05]
 - Dvali-Gabadadze-Porrati (DGP) model. [Dvali, Gabadadze, Porrati '00, Lue '06]
 - Non-symmetric gravity. [Moffat '95]
 - Area metric gravity. [Punzi, Schuller, Wohlfarth '07]
 - New idea: repulsive gravity \Leftrightarrow negative mass!

Three types of mass! [Bondi '57]

- Active gravitational mass m_a source of gravity: $\phi = -G_N \frac{m_a}{r}$.
- Passive gravitational mass m_p reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
- Inertial mass m_i relates force to acceleration: $\vec{F} = m_i \vec{a}$.

- Three types of mass! [Bondi '57]
 - Active gravitational mass m_a source of gravity: $\phi = -G_N \frac{m_a}{r}$.
 - Passive gravitational mass m_p reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
 - Inertial mass m_i relates force to acceleration: $\vec{F} = m_i \vec{a}$.
- Theory relates the different types of mass:
 - Momentum conservation: $m_a \sim m_p$.
 - Weak equivalence principle: $m_p \sim m_i$.

- Three types of mass! [Bondi '57]
 - Active gravitational mass m_a source of gravity: $\phi = -G_N \frac{m_a}{r}$.
 - Passive gravitational mass m_p reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
 - Inertial mass m_i relates force to acceleration: $\vec{F} = m_i \vec{a}$.
- Theory relates the different types of mass:
 - Momentum conservation: $m_a \sim m_p$.
 - Weak equivalence principle: $m_p \sim m_i$.
- $m_a \sim m_p \sim m_i$ experimentally verified.
- Gravity is always attractive.
- Convention: unit ratios and signs such that $m_a = m_p = m_i > 0$.

- Three types of mass! [Bondi '57]
 - Active gravitational mass m_a source of gravity: $\phi = -G_N \frac{m_a}{r}$.
 - Passive gravitational mass m_p reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
 - Inertial mass m_i relates force to acceleration: $\vec{F} = m_i \vec{a}$.
- Theory relates the different types of mass:
 - Momentum conservation: $m_a \sim m_p$.
 - Weak equivalence principle: $m_p \sim m_i$.
- $m_a \sim m_p \sim m_i$ experimentally verified.
- Gravity is always attractive.
- Convention: unit ratios and signs such that $m_a = m_p = m_i > 0$.
- Observations exist for visible mass only.

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

Explanation of dark energy.

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

Explanation of dark energy.

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

- Explanation of dark energy.
- ⇒ Advantage: Dark copy Ψ^- of well-known standard model Ψ^+ :
 - No new parameters.
 - No unknown masses.
 - No unknown couplings.

- Positive and negative test masses follow different trajectories.
- Two types of test mass trajectories \Rightarrow two types of observers.
- Observer trajectories are autoparallels of two connections ∇[±].
- Observers attach parallely transported frames to their curves.
- Frames are orthonormalized using two metric tensors g_{ab}^{\pm} .

- Positive and negative test masses follow different trajectories.
- Two types of test mass trajectories \Rightarrow two types of observers.
- Observer trajectories are autoparallels of two connections ∇[±].
- Observers attach parallely transported frames to their curves.
- Frames are orthonormalized using two metric tensors g[±]_{ab}.
- No-go theorem forbids bimetric repulsive gravity. [MH, M. Wohlfarth '09]
- Solution: $N \ge 3$ metrics g_{ab}^{l} and standard model copies Ψ^{l} .

Action and equations of motion

- N metric tensors and N standard model copies.
- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1, \dots, g^N] = rac{1}{2} \int d^4x \sqrt{g_0} \left[\sum_{l,J=1}^N (x + y \delta^{lJ}) g^{lij} R^J_{ij} + F(S^{lJ})
ight]$$

- Symmetric volume form $g_0 = (g^1 g^2 \dots g^N)^{1/N}$.
- $F(S^{IJ})$ quadratic in connection difference tensors $S^{IJ} = \Gamma^{I} \Gamma^{J}$.

Action and equations of motion

- N metric tensors and N standard model copies.
- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1, \dots, g^N] = rac{1}{2} \int d^4x \sqrt{g_0} \left[\sum_{l,J=1}^N (x + y \delta^{lJ}) g^{lij} R^J_{ij} + F(S^{lJ})
ight]$$

- Symmetric volume form $g_0 = (g^1 g^2 \dots g^N)^{1/N}$.
- $F(S^{IJ})$ quadratic in connection difference tensors $S^{IJ} = \Gamma^{I} \Gamma^{J}$. \Rightarrow Equations of motion:

$$\begin{split} T_{ab}^{I} &= \sqrt{\frac{g_{0}}{g^{I}}} \left[-\frac{1}{2N} g_{ab}^{I} \sum_{J,K=1}^{N} (x + y \delta^{JK}) g^{Jij} R^{K}{}_{ij} + \sum_{J=1}^{N} (x + y \delta^{IJ}) R^{J}{}_{ab} \right] \\ &+ \text{ terms linear in } \nabla^{I} \mathcal{S}^{JK} \\ &+ \text{ terms quadratic in } \mathcal{S}^{IJ} \,. \end{split}$$

 \Rightarrow Repulsive Newtonian limit for $N \ge 3$. [MH, M. Wohlfarth '10]

Introduction

Multimetric cosmology

- 3) Simulation of structure formation
- 4 Post-Newtonian consistency
- 5 Gravitational waves

6 Conclusion

Standard cosmology: Robertson–Walker metrics

$$g' = -n_I^2(t)dt \otimes dt + a_I^2(t)\gamma_{lphaeta}dx^{lpha} \otimes dx^{eta}$$

- Lapse functions *n*_l.
- Scale factors a_l.
- Spatial metric $\gamma_{\alpha\beta}$ of constant curvature $k \in \{-1, 0, 1\}$ and Riemann tensor $R(\gamma)_{\alpha\beta\gamma\delta} = 2k\gamma_{\alpha[\gamma}\gamma_{\delta]\beta}$.
- Perfect fluid matter:

$$T^{Iab} = (\rho_I + p_I)u^{Ia}u^{Ib} + p_I g^{Iab}.$$

• Normalization: $g_{ab}^{l}u^{la}u^{lb} = -1$.

Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.

Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
- \Rightarrow Single effective energy-momentum tensor $T_{ab}^{l} = T_{ab}$.
- \Rightarrow Single effective metric $g_{ab}^{l} = g_{ab}$.
- \Rightarrow Common scale factors a' = a and lapse functions n' = n.
- ⇒ Rescale cosmological time to set $n \equiv 1$.
- \Rightarrow Ricci tensors $R_{ab}^{l} = R_{ab}$ become equal.
- \Rightarrow Connection differences $S^{IJi}_{jk} = 0$ vanish.

Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
- \Rightarrow Single effective energy-momentum tensor $T_{ab}^{l} = T_{ab}$.
- \Rightarrow Single effective metric $g_{ab}^{l} = g_{ab}$.
- \Rightarrow Common scale factors a' = a and lapse functions n' = n.
- ⇒ Rescale cosmological time to set $n \equiv 1$.
- \Rightarrow Ricci tensors $R_{ab}^{l} = R_{ab}$ become equal.
- \Rightarrow Connection differences $S^{IJi}_{jk} = 0$ vanish.
- \Rightarrow Equations of motion simplify:

$$(2-N)T_{ab}=R_{ab}-\frac{1}{2}Rg_{ab}.$$

 \Rightarrow Negative effective gravitational constant for early / late universe.

Cosmological equations of motion

• Insert Robertson–Walker metric into equations of motion:

$$\rho = \frac{3}{2 - N} \left(\frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right),$$
$$\rho = -\frac{1}{2 - N} \left(2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right).$$

⇒ Positive matter density $\rho > 0$ requires k = -1 and $\dot{a}^2 < 1$. ⇒ No solutions for k = 0 or k = 1.

Cosmological equations of motion

Insert Robertson–Walker metric into equations of motion:

$$\rho = \frac{3}{2 - N} \left(\frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right),$$
$$\rho = -\frac{1}{2 - N} \left(2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right).$$

- ⇒ Positive matter density ρ > 0 requires k = -1 and $\dot{a}^2 < 1$.
- \Rightarrow No solutions for k = 0 or k = 1.
 - Acceleration equation:

$$\frac{\ddot{a}}{a}=\frac{N-2}{6}\left(\rho+3p\right).$$

 \Rightarrow Acceleration must be positive for standard model matter.

- Equation of state: $p = \omega \rho$; dust: $\omega = 0$, radiation: $\omega = 1/3$.
- General solution using conformal time η defined by $dt = a d\eta$:

$$\begin{aligned} a &= a_0 \left(\cosh\left(\frac{3\omega+1}{2}(\eta-\eta_0)\right) \right)^{\frac{2}{3\omega+1}}, \\ \rho &= \frac{3}{(N-2)a_0^2} \left(\cosh\left(\frac{3\omega+1}{2}(\eta-\eta_0)\right) \right)^{-\frac{6\omega+6}{3\omega+1}} \end{aligned}$$

 \Rightarrow Positive minimal radius a_0 . [MH, M. Wohlfarth '10]

٠

Cosmological evolution

Introduction

2 Multimetric cosmology

Simulation of structure formation

- 4 Post-Newtonian consistency
- 5 Gravitational waves

6 Conclusion

Structure formation

- Formation of galactic structures not fully understood:
 - Missing dwarf problem. [Moore et al. '99]
 - Core-cusp-problem. [Dubinski, Carlberg '91; Navarro et al. '96]
- Structure formation in multimetric gravity:
 - Perturbation of cosmological background solution.
 - Model dust matter by point particles.
 - Interaction between point particles given by Newtonian limit.
- Implementation:
 - Large particle number requires high computing power.
 - ⇒ Use GPU computing!
- Results:
 - Galactic clusters and filament-like structures.
 - Seemingly empty voids contain "invisible" matter.
 - \Rightarrow Repulsive gravity effects from galactic voids.
 - ⇒ Negative gravitational lenses in galactic voids?

Structure formation - all matter types

Structure formation - all matter types

Structure formation - only visible matter

Structure formation - only visible matter

Introduction

- 2 Multimetric cosmology
- 3 Simulation of structure formation
- Post-Newtonian consistency
- 5 Gravitational waves

6 Conclusion

Parametrized post-Newtonian formalism

- Obtain "fingerprint" of single-metric gravity theories. [Thorne, Will '71; Will '93]
- \Rightarrow 10 parameters, constrained by solar system experiments.

Parametrized post-Newtonian formalism

- Obtain "fingerprint" of single-metric gravity theories. [Thorne, Will '71; Will '93]
- \Rightarrow 10 parameters, constrained by solar system experiments.
 - Extension to multimetric gravity theories. [MH, M. Wohlfarth '10]
- \Rightarrow Additional 14 unobserved parameters.
- \Rightarrow 8 parameters can be obtained from linearized field equations.

Parametrized post-Newtonian formalism

- Obtain "fingerprint" of single-metric gravity theories. [Thorne, Will '71; Will '93]
- \Rightarrow 10 parameters, constrained by solar system experiments.
 - Extension to multimetric gravity theories. [MH, M. Wohlfarth '10]
- \Rightarrow Additional 14 unobserved parameters.
- \Rightarrow 8 parameters can be obtained from linearized field equations.
 - Example: multimetric action can be chosen such that

•
$$\alpha^+ = 1$$
, $\theta^+ = 0$: standard PPN gauge choice.

•
$$\gamma^+ = 1$$
, $\sigma^+_+ = -2$: experimental consistency.

• $\alpha^{-} = -1$: repulsive Newtonian limit.

•
$$\gamma^- = -1$$
, $\theta^- = 0$, $\sigma^-_+ = 2$: additional "dark" PPN parameters.

Multimetric example theory

Gravitational action with parameters x, y, u, v, w, r, s [MH 12]:

$$S_{G} = \frac{1}{16\pi} \int d^{4}x \sqrt{g_{0}} \left[x \sum_{l,J=1}^{N} g^{l\,ij} R^{J}{}_{ij} + \sum_{l=1}^{N} g^{l\,ij} \left(y R^{l}{}_{ij} + u \tilde{S}^{l}{}_{i} \tilde{S}^{l}{}_{j} + v \tilde{S}^{l\,k}{}_{k} \tilde{S}^{l\,k}{}_{ij} + w \tilde{S}^{l\,k}{}_{im} \tilde{S}^{l\,m}{}_{jk} + g^{l\,kl} g^{l}{}_{mn} \left(r \tilde{S}^{l\,m}{}_{ik} \tilde{S}^{l\,n}{}_{jl} + s \tilde{S}^{l\,m}{}_{ij} \tilde{S}^{l\,n}{}_{kl} \right) \right) \right]$$

Restriction of input parameters by PPN consistency:

$$y = \frac{1}{2 - N} - Nx, \quad v = \frac{6 - N}{4 - 2N} - Nx + 2u,$$
$$w = -\frac{6 - N}{4 - 2N} + Nx - 3u, \quad r = -\frac{1}{2 - N} + Nx - u.$$

 \Rightarrow PPN consistent theory with parameters *x*, *u*, *s*.

Introduction

- 2 Multimetric cosmology
- 3 Simulation of structure formation
- Post-Newtonian consistency
- 5 Gravitational waves
- 6 Conclusion

- Perturbation ansatz: $g' = \eta + h'$.
- Most general linearized vacuum field equations:

 $\underline{\underline{P}} \cdot \partial^{p} \partial_{(a} \underline{\underline{h}}_{b)p} + \underline{\underline{Q}} \cdot \Box \underline{\underline{h}}_{ab} + \underline{\underline{R}} \cdot \partial_{a} \partial_{b} \underline{\underline{h}} + \underline{\underline{M}} \cdot \partial^{p} \partial^{q} \underline{\underline{h}}_{pq} \eta_{ab} + \underline{\underline{M}} \cdot \Box \underline{\underline{h}} \eta_{ab} = 0$

- Parameter matrices $\underline{\underline{P}}, \underline{\underline{Q}}, \underline{\underline{R}}, \underline{\underline{M}}, \underline{\underline{N}}$.
- Diagonalize parameter matrices.
- \Rightarrow 10 parameters $P_1, P_0, Q_1, Q_0, R_1, R_0, M_1, M_0, N_1, N_0$.

- Perturbation ansatz: $g' = \eta + h'$.
- Most general linearized vacuum field equations:

 $\underline{\underline{P}} \cdot \partial^{p} \partial_{(\underline{a}\underline{h}_{b})p} + \underline{\underline{Q}} \cdot \Box \underline{\underline{h}}_{ab} + \underline{\underline{R}} \cdot \partial_{\underline{a}} \partial_{\underline{b}} \underline{\underline{h}} + \underline{\underline{M}} \cdot \partial^{p} \partial^{q} \underline{\underline{h}}_{pq} \eta_{ab} + \underline{\underline{M}} \cdot \Box \underline{\underline{h}} \eta_{ab} = 0$

- Parameter matrices $\underline{\underline{P}}, \underline{\underline{Q}}, \underline{\underline{R}}, \underline{\underline{M}}, \underline{\underline{N}}$.
- Diagonalize parameter matrices.
- \Rightarrow 10 parameters $P_1, P_0, Q_1, Q_0, R_1, R_0, M_1, M_0, N_1, N_0$.
 - Calculate wave-like solutions of vacuum field equations.
- \Rightarrow Gravitational waves propagate at the speed of light.

Polarizations and E(2) class

- Polarizations classified by reps. of E(2). [Eardley, Lee, Lightman et al. '73]
- E(2) class depends on parameters P_i , R_i , M_i .

PPN consistent multimetric example

Parameter values [MH '12]:

$$P_{1} = -2Q_{1} = -2R_{1} = -2M_{1} = 2N_{1} = \frac{1}{2 - N},$$

$$P_{0} = \frac{6 - N}{4 - 2N} - 2Nx + 2u - 2s, \quad N_{0} = \frac{4 - N}{8 - 4N} + \frac{-Nx + u - s}{2},$$

$$Q_{0} = -\frac{1}{4}, \quad R_{0} = M_{0} = -\frac{6 - N}{8 - 4N} + Nx - u + s.$$

PPN consistent multimetric example

Parameter values [MH '12]:

$$P_{1} = -2Q_{1} = -2R_{1} = -2M_{1} = 2N_{1} = \frac{1}{2 - N},$$

$$P_{0} = \frac{6 - N}{4 - 2N} - 2Nx + 2u - 2s, \quad N_{0} = \frac{4 - N}{8 - 4N} + \frac{-Nx + u - s}{2},$$

$$Q_{0} = -\frac{1}{4}, \quad R_{0} = M_{0} = -\frac{6 - N}{8 - 4N} + Nx - u + s.$$

• Dependent only on single parameter p := Nx - u + s.

Generic case:

- E(2) class for \mathfrak{h}^1 : N₂
- E(2) class for hⁱ: N₂
- \Rightarrow Effective E(2) class: N₂

- Special case $p = \frac{6-N}{8-4N}$:
 - E(2) class for \mathfrak{h}^1 : N₂
 - E(2) class for \mathfrak{h}^i : II₆
 - \Rightarrow Effective E(2) class: II₆

Introduction

- 2 Multimetric cosmology
- 3 Simulation of structure formation
- 4 Post-Newtonian consistency
- 5 Gravitational waves

- Idea: Repulsive gravity might explain dark matter & dark energy.
- ⇒ Multimetric repulsive gravity with $N \ge 3$ by explicit construction.
- \Rightarrow Cosmology features late-time acceleration and big bounce.
- \Rightarrow Structure formation features clusters and voids.
- \Rightarrow Repulsive gravity is consistent with solar system experiments.
- \Rightarrow Gravitational waves are null.
- \Rightarrow E(2) class can be one of N₂, N₃, III₅, II₆.

- Work in progress:
 - Emission of gravitational waves from binary systems.
 - Post-Newtonian approximation of axially symmetric solutions.

- Work in progress:
 - Emission of gravitational waves from binary systems.
 - Post-Newtonian approximation of axially symmetric solutions.
- Future work:
 - Remaining PPN parameters from full multimetric PPN formalism.
 - Restrict multimetric gravity theories by additional PPN bounds.
 - Further construction principles, e.g., higher symmetries.
 - Construct further exact solutions.
 - Stabillity of cosmological solutions.
 - Obtain restrictions from cosmological perturbation theory.