#### Multimetric cosmology and structure formation

#### Manuel Hohmann

Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool



3. oktoober 2012

#### Outline

- Introduction
- Multimetric cosmology
- Simulation of structure formation
- 4 Conclusion

#### Outline

- Introduction
- Multimetric cosmology
- Simulation of structure formation
- 4 Conclusion

# Einstein gravity

- Gravity is described by metric tensor g<sub>ab</sub>.
- Einstein-Hilbert action:

$$S_G = \frac{1}{2} \int \omega R$$
.

- Volume form  $\omega$ .
- Scalar curvature R.
- Minimally coupled matter action:

$$S_{M} = \int \omega \mathcal{L}_{M}$$
.

• Einstein equations:

$$R_{ab}-rac{1}{2}Rg_{ab}=T_{ab}$$
 .

4.6% visible matter.

[Komatsu et al. '09]

4.6% visible matter.

```
[Komatsu et al. '09]
```

- 22.8% dark matter.
  - Galaxy rotation curves.

```
[de Blok, Bosma '02]
```

Anomalous light deflection.

```
[Wambsganss '98]
```

4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
  - Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.

[Wambsganss '98]



4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
  - Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.

[Wambsganss '98]



4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
  - Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.

[Wambsganss '98]

- 72.6% dark energy.
  - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]

4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
  - Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.
 [Wambsganss '98]

- 72.6% dark energy.
  - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]













4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter.
  - Galaxy rotation curves.

[de Blok, Bosma '02]

- Anomalous light deflection.
   [Wambsganss '98]
- 72.6% dark energy.
  - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]



4.6% visible matter.

[Komatsu et al. '09]

- 22.8% dark matter?
  - Galaxy rotation curves.

[de Blok, Bosma '02]

Anomalous light deflection.

[Wambsganss '98]

- 72.6% dark energy?
  - Accelerating expansion.

[Riess et al. '98; Perlmutter et al. '98]

⇒ Problem: What are dark matter and dark energy?

#### Explanations for the dark universe

- Particle physics:
  - Dark matter: [Bertone, Hooper, Silk '05]
    - Weakly interacting massive particles (WIMPs). [Ellis et al. '84]
    - Axions. [Preskill, Wise, Wilczek '83]
    - Massive compact halo objects (MACHOs). [Paczynski '86]
  - Dark energy: [Copeland, Sami, Tsujikawa '06]
    - Quintessence. [Peebles, Ratra '88]
    - K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
    - Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]
- Gravity:
  - Modified Newtonian dynamics (MOND). [Milgrom '83]
  - Tensor-vector-scalar theories. [Bekenstein '04]
  - Curvature corrections. [Schuller, Wohlfarth '05; Sotiriou, Faraoni '05]
  - Dvali-Gabadadze-Porrati (DGP) model. [Dvali, Gabadadze, Porrati '00, Lue '06]
  - Non-symmetric gravity. [Moffat '95]
  - Area metric gravity. [Punzi, Schuller, Wohlfarth '07]

#### Explanations for the dark universe

- Particle physics:
  - Dark matter: [Bertone, Hooper, Silk '05]
    - Weakly interacting massive particles (WIMPs). [Ellis et al. '84]
    - Axions. [Preskill, Wise, Wilczek '83]
    - Massive compact halo objects (MACHOs). [Paczynski '86]
  - Dark energy: [Copeland, Sami, Tsujikawa '06]
    - Quintessence. [Peebles, Ratra '88]
    - K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
    - Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]
- Gravity:
  - Modified Newtonian dynamics (MOND). [Milgrom '83]
  - Tensor-vector-scalar theories. [Bekenstein '04]
  - Curvature corrections. [Schuller, Wohlfarth '05; Sotiriou, Faraoni '05]
  - Dvali-Gabadadze-Porrati (DGP) model. [Dvali, Gabadadze, Porrati '00, Lue '06]
  - Non-symmetric gravity. [Moffat '95]
  - Area metric gravity. [Punzi, Schuller, Wohlfarth '07]
  - New idea: repulsive gravity ⇔ negative mass!

- Three types of mass! [Bondi '57]
  - Active gravitational mass  $m_a$  source of gravity:  $\phi = -G_N \frac{m_a}{r}$ .
  - Passive gravitational mass  $m_p$  reaction on gravity:  $\vec{F} = -m_p \vec{\nabla} \phi$ .
  - Inertial mass  $m_i$  relates force to acceleration:  $\vec{F} = m_i \vec{a}$ .

- Three types of mass! [Bondi '57]
  - Active gravitational mass  $m_a$  source of gravity:  $\phi = -G_N \frac{m_a}{r}$ .
  - Passive gravitational mass  $m_p$  reaction on gravity:  $\vec{F} = -m_p \vec{\nabla} \phi$ .
  - Inertial mass  $m_i$  relates force to acceleration:  $\vec{F} = m_i \vec{a}$ .
- Theory relates the different types of mass:
  - Momentum conservation:  $m_a \sim m_p$ .
  - Weak equivalence principle:  $m_p \sim m_i$ .

- Three types of mass! [Bondi '57]
  - Active gravitational mass  $m_a$  source of gravity:  $\phi = -G_N \frac{m_a}{r}$ .
  - Passive gravitational mass  $m_p$  reaction on gravity:  $\vec{F} = -m_p \vec{\nabla} \phi$ .
  - Inertial mass  $m_i$  relates force to acceleration:  $\vec{F} = m_i \vec{a}$ .
- Theory relates the different types of mass:
  - Momentum conservation:  $m_a \sim m_p$ .
  - Weak equivalence principle:  $m_p \sim m_i$ .
- $m_a \sim m_p \sim m_i$  experimentally verified.
- Gravity is always attractive.
- Convention: unit ratios and signs such that  $m_a = m_p = m_i > 0$ .

- Three types of mass! [Bondi '57]
  - Active gravitational mass  $m_a$  source of gravity:  $\phi = -G_N \frac{m_a}{r}$ .
  - Passive gravitational mass  $m_p$  reaction on gravity:  $\vec{F} = -m_p \vec{\nabla} \phi$ .
  - Inertial mass  $m_i$  relates force to acceleration:  $\vec{F} = m_i \vec{a}$ .
- Theory relates the different types of mass:
  - Momentum conservation:  $m_a \sim m_D$ .
  - Weak equivalence principle:  $m_p \sim m_i$ .
- $m_a \sim m_p \sim m_i$  experimentally verified.
- Gravity is always attractive.
- Convention: unit ratios and signs such that  $m_a = m_p = m_i > 0$ .
- Observations exist for visible mass only.

- Idea for dark universe: standard model with  $m_a = m_p = -m_i < 0$ .
- Both copies couple only through gravity ⇒ "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.

- Idea for dark universe: standard model with  $m_a = m_p = -m_i < 0$ .
- ullet Both copies couple only through gravity  $\Rightarrow$  "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.



- Idea for dark universe: standard model with  $m_a = m_p = -m_i < 0$ .
- Both copies couple only through gravity ⇒ "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.



- Idea for dark universe: standard model with  $m_a = m_p = -m_i < 0$ .
- Both copies couple only through gravity ⇒ "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.



Explanation of dark energy.



- Idea for dark universe: standard model with  $m_a = m_p = -m_i < 0$ .
- ullet Both copies couple only through gravity  $\Rightarrow$  "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.



Explanation of dark energy.



- Idea for dark universe: standard model with  $m_a = m_p = -m_i < 0$ .
- Both copies couple only through gravity ⇒ "dark".
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.



- Explanation of dark energy.
- $\Rightarrow$  Advantage: Dark copy  $\Psi^-$  of well-known standard model  $\Psi^+$ :
  - No new parameters.
  - No unknown masses.
  - No unknown couplings.



# Repulsive Einstein gravity

- Positive and negative test masses follow different trajectories.
- Two types of test mass trajectories ⇒ two types of observers.
- Observer trajectories are autoparallels of two connections  $\nabla^{\pm}$ .
- Observers attach parallely transported frames to their curves.
- Frames are orthonormalized using two metric tensors  $g_{ab}^{\pm}$ .

# Repulsive Einstein gravity

- Positive and negative test masses follow different trajectories.
- Two types of test mass trajectories ⇒ two types of observers.
- Observer trajectories are autoparallels of two connections  $\nabla^{\pm}$ .
- Observers attach parallely transported frames to their curves.
- Frames are orthonormalized using two metric tensors  $g_{ab}^{\pm}$ .
- No-go theorem forbids bimetric repulsive gravity. [MH, M. Wohlfarth '09]
- Solution:  $N \ge 3$  metrics  $g_{ab}^I$  and standard model copies  $\Psi^I$ .

# Action and equations of motion

- N metric tensors and N standard model copies.
- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1,\ldots,g^N] = \frac{1}{2} \int d^4x \sqrt{g_0} \left[ \sum_{I,J=1}^N c^{IJ} g^{Iij} R^J_{ij} + F(S^{IJ}) \right].$$

- Symmetric volume form  $g_0 = (g^1 g^2 \dots g^N)^{1/N}$ .
- $F(S^{IJ})$  quadratic in connection difference tensors  $S^{IJ} = \Gamma^I \Gamma^J$ .

# Action and equations of motion

- N metric tensors and N standard model copies.
- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1,\ldots,g^N] = \frac{1}{2} \int d^4x \sqrt{g_0} \left[ \sum_{I,J=1}^N c^{IJ} g^{Iij} R^J_{ij} + F(S^{IJ}) \right].$$

- Symmetric volume form  $g_0 = (g^1 g^2 \dots g^N)^{1/N}$ .
- $F(S^{IJ})$  quadratic in connection difference tensors  $S^{IJ} = \Gamma^I \Gamma^J$ .
- ⇒ Equations of motion:

$$T_{ab}^{I} = \sqrt{\frac{g_0}{g^I}} \left[ -\frac{1}{2N} g_{ab}^{I} \sum_{J,K=1}^{N} c^{JK} g^{Jij} R^{K}_{ij} + \sum_{J=1}^{N} c^{IJ} R^{J}_{ab} \right]$$

- + terms linear in  $\nabla^I S^{JK}$
- + terms quadratic in  $S^{IJ}$ .
- $\Rightarrow$  Repulsive Newtonian limit for  $N \geq 3$ . [MH, M. Wohlfarth  $^{110}$ ]

#### Outline

- Introduction
- Multimetric cosmology
- 3 Simulation of structure formation
- 4 Conclusion

# Cosmological symmetry

Standard cosmology: Robertson–Walker metrics

$$g^I = - n_I^2(t) dt \otimes dt + a_I^2(t) \gamma_{lphaeta} dx^lpha \otimes dx^eta \, .$$

- Lapse functions n<sub>l</sub>.
- Scale factors a<sub>l</sub>.
- Spatial metric  $\gamma_{\alpha\beta}$  of constant curvature  $k \in \{-1, 0, 1\}$  and Riemann tensor  $R(\gamma)_{\alpha\beta\gamma\delta} = 2k\gamma_{\alpha[\gamma}\gamma_{\delta]\beta}$ .
- Perfect fluid matter:

$$T^{lab} = (\rho_l + p_l)u^{la}u^{lb} + p_lg^{lab}.$$

• Normalization:  $g_{ab}^l u^{la} u^{lb} = -1$ .

### Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.

# Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
- $\Rightarrow$  Single effective energy-momentum tensor  $T_{ab}^{I} = T_{ab}$ .
- $\Rightarrow$  Single effective metric  $g_{ab}^{I} = g_{ab}$ .
- $\Rightarrow$  Common scale factors  $a^{l} = a$  and lapse functions  $n^{l} = n$ .
- $\Rightarrow$  Rescale cosmological time to set  $n \equiv 1$ .
- $\Rightarrow$  Ricci tensors  $R_{ab}^{l} = R_{ab}$  become equal.
- $\Rightarrow$  Connection differences  $S^{IJi}_{ik} = 0$  vanish.

### Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
- $\Rightarrow$  Single effective energy-momentum tensor  $T_{ab}^{I} = T_{ab}$ .
- $\Rightarrow$  Single effective metric  $g_{ab}^{I} = g_{ab}$ .
- $\Rightarrow$  Common scale factors  $a^{l} = a$  and lapse functions  $n^{l} = n$ .
- $\Rightarrow$  Rescale cosmological time to set  $n \equiv 1$ .
- $\Rightarrow$  Ricci tensors  $R_{ab}^{l} = R_{ab}$  become equal.
- $\Rightarrow$  Connection differences  $S^{IJi}_{jk} = 0$  vanish.
- ⇒ Equations of motion simplify for repulsive Newtonian limit:

$$(2-N)T_{ab} = R_{ab} - \frac{1}{2}Rg_{ab}$$
.

 $\Rightarrow$  Negative effective gravitational constant for early / late universe.

### Cosmological equations of motion

Insert Robertson–Walker metric into equations of motion:

$$\begin{split} \rho &= \frac{3}{2-N} \left( \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right), \\ p &= -\frac{1}{2-N} \left( 2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right). \end{split}$$

- $\Rightarrow$  Positive matter density  $\rho > 0$  requires k = -1 and  $\dot{a}^2 < 1$ .
- $\Rightarrow$  No solutions for k = 0 or k = 1.

### Cosmological equations of motion

Insert Robertson–Walker metric into equations of motion:

$$\begin{split} \rho &= \frac{3}{2-N} \left( \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right), \\ p &= -\frac{1}{2-N} \left( 2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right). \end{split}$$

- $\Rightarrow$  Positive matter density  $\rho > 0$  requires k = -1 and  $\dot{a}^2 < 1$ .
- $\Rightarrow$  No solutions for k = 0 or k = 1.
  - Acceleration equation:

$$\frac{\ddot{a}}{a}=\frac{N-2}{6}\left(\rho+3p\right).$$

⇒ Acceleration must be positive for standard model matter.

# **Explicit solution**

- Equation of state:  $p = \omega \rho$ ; dust:  $\omega = 0$ , radiation:  $\omega = 1/3$ .
- General solution using conformal time  $\eta$  defined by  $dt = a d\eta$ :

$$\begin{split} a &= a_{\text{min}} \left( \cosh \left( \frac{3\omega + 1}{2} \eta \right) \right)^{\frac{2}{3\omega + 1}} \,, \\ \rho &= \frac{3}{(N-2) a_{\text{min}}^2} \left( \cosh \left( \frac{3\omega + 1}{2} \eta \right) \right)^{-\frac{6\omega + 6}{3\omega + 1}} \,. \end{split}$$

 $\Rightarrow$  Positive minimal radius  $a_{\min}$  (Big Bounce). [MH, M. Wohlfarth '10]

# Cosmological evolution





# Cosmological parameters

- Friedmann equation:  $(2 N)\Omega_M + \Omega_K = 1$ .
- Matter density:

$$\Omega_{M}=rac{
ho_{0}}{3H_{0}^{2}}\sim ext{sinh}^{-2}\left(rac{3\omega+1}{2}\eta_{0}
ight).$$

- Curvature parameter:  $\Omega_K = -\frac{k}{a_0^2 H_0^2} = \frac{1}{\dot{a}^2(t_0)} \to 1 \ .$
- Fitting of supernova data: [Amanullah et al. '10]



### Outline

- Introduction
- Multimetric cosmology
- Simulation of structure formation
- 4 Conclusion

## Ingredients

• Metrics  $g_{ab}^I = g_{ab}^0 + h_{ab}^I$  with

$$g^0 = -dt \otimes dt + a^2(t)\gamma_{lphaeta}dx^lpha \otimes dx^eta$$

and a(t) determined by cosmology.

- Scale for structure formation ≪ curvature radius of the universe:
  - Cubic volume  $0 \le x^{\alpha} \le \ell$ .
  - Approximate  $\gamma_{\alpha\beta}$  by  $\delta_{\alpha\beta}$ .
  - Periodic boundary conditions.
- Matter content: n point masses M for each sector.
  - Model for dust matter: p = 0.
  - Matter density:

$$\rho = \frac{Mn}{(a\ell)^3} \, .$$

- Large mean distance  $a\ell/\sqrt[3]{Nn} \gg 2GM$ .
- Small peculiar velocities  $|v_{ii}^{\alpha}| = |a\dot{x}_{ii}^{\alpha}| \ll 1$ .

## Local dynamics

• Masses of type I follow geodesics of their metric  $g_{ab}^I$ :

$$\ddot{x}_{li}^{\alpha} = \frac{\partial_{\alpha} h_{00}^{l}}{2a^{2}} - 2\frac{\dot{a}}{a}\dot{x}_{li}^{\alpha}.$$

• Antisymmetric Poisson equation:

$$h'_{00} = -2\sum_{J=1}^{N}(2\delta^{IJ}-1)\Phi^{J}$$
.

• Individual Newtonian potentials  $\Phi^{I}(t, \vec{x})$ :

$$\Phi^{I}(t,\vec{x}) = -\frac{M}{a(t)} \sum_{i=1}^{n} \frac{1}{d(\vec{x},\vec{x}_{Ii}(t))}.$$

• Periodic distance function  $d(\vec{x}, \vec{x'})$ :

$$d(\vec{x}, \vec{x'}) = \min_{\vec{k} \in \mathbb{Z}^3} \left| \vec{x} - \vec{x}' + \ell \vec{k} \right|.$$

## Implementation

- N = 4 matter types.
- n = 16384 point masses for each matter type.
- 2000 calculation steps.
- Simulation written in C.
- Calculation using 3.0 GHz Intel Core 2 Duo E8400 CPU.
- $\Rightarrow$  7.5 days computation time.

## Evolution - all matter types (N = 4, n = 16384)



# Final state - all matter types (N = 4, n = 16384)



# Final state - only visible matter (N = 4, n = 16384)



- Different matter types separate.
- Formation of clusters.
- Seemingly empty voids contain invisible matter types.
- Structures are very coarse.

- Different matter types separate.
- Formation of clusters.
- Seemingly empty voids contain invisible matter types.
- Structures are very coarse.
- ⇒ Increase number of point masses.
  - N = 4 matter types.
  - n = 262144 point masses for each matter type.
  - 17120 calculation steps.

- Different matter types separate.
- Formation of clusters.
- Seemingly empty voids contain invisible matter types.
- Structures are very coarse.
- ⇒ Increase number of point masses.
  - N = 4 matter types.
  - n = 262144 point masses for each matter type.
  - 17120 calculation steps.
- ⇒ Higher computation power required.
  - Simulation written in CUDA.
  - Calculation using NVidia Tesla C2075 GPU.
- $\Rightarrow$  2 months computation time.

## Evolution - all matter types (N = 4, n = 262144)



# Final state - all matter types (N = 4, n = 262144)



## Evolution - only visible matter (N = 4, n = 262144)



## Final state - only visible matter (N = 4, n = 262144)



- Structures are still very coarse.
- Voids are not very empty.
- Violent dynamics.

- Structures are still very coarse.
- Voids are not very empty.
- Violent dynamics.
- ⇒ Increase number of matter types.
  - N = 16 matter types.
  - n = 65536 point masses for each matter type.
  - 31600 calculation steps.
  - Simulation written in CUDA.
  - Calculation using NVidia Tesla C2075 GPU.
- $\Rightarrow$  3.5 months computation time.

## Evolution - all matter types (N = 16, n = 65536)



# Final state - all matter types (N = 16, n = 65536)



# Evolution - only visible matter (N = 16, n = 65536)



# Final state - only visible matter (N = 16, n = 65536)



### Results

- Finer structures.
- Filaments between galactic clusters.
- Large voids free of visible matter.
- Voids contain clusters of repulsively interacting matter.
  - Possible explanation for local velocity anomaly? [Tully '07]
  - Important contribution to weak lensing.
  - Strong negative gravitational lenses?
  - ⇒ Calculate gravitational lensing from simulation data!

### Results

- Finer structures.
- Filaments between galactic clusters.
- Large voids free of visible matter.
- Voids contain clusters of repulsively interacting matter.
  - Possible explanation for local velocity anomaly? [Tully '07]
  - Important contribution to weak lensing.
  - Strong negative gravitational lenses?
  - ⇒ Calculate gravitational lensing from simulation data!
- Further increase number of point masses used in the simulation?
- Problem: Currently used algorithm scales as  $\mathcal{O}(n^2)$ .
- ⇒ Use different algorithm!

#### Future work

- Adapt GADGED-2 code [Springel '05] to multimetric gravity.
- TreeSPH algorithm:
  - Gravitational forces from hierarchical multipole expansion.
  - Gas dynamics from smoothed particle hydrodynamics (SPH).
- Better scaling behavior  $\mathcal{O}(n \log n)$ .
- Usable on multicore PCs & clusters.

### Outline

- Introduction
- 2 Multimetric cosmology
- Simulation of structure formation
- 4 Conclusion

## Summary

- Idea: Repulsive gravity might explain dark matter & dark energy.
- $\Rightarrow$  Multimetric repulsive gravity with  $N \ge 3$  by explicit construction.

## Summary

- Idea: Repulsive gravity might explain dark matter & dark energy.
- $\Rightarrow$  Multimetric repulsive gravity with  $N \ge 3$  by explicit construction.
  - Cosmology:
    - ⇒ Big Bounce cosmology.
    - ⇒ Accelerating expansion becomes small at late times.

## Summary

- Idea: Repulsive gravity might explain dark matter & dark energy.
- $\Rightarrow$  Multimetric repulsive gravity with  $N \ge 3$  by explicit construction.
  - Cosmology:
    - ⇒ Big Bounce cosmology.
    - ⇒ Accelerating expansion becomes small at late times.
  - Structure formation:
    - ⇒ Result highly depends on number N of matter types.
    - ⇒ Formation of galactic clusters.
    - ⇒ Voids contain repulsively interacting, invisible matter.

### Outlook

- Further cosmological calculations:
  - Analyze stability of cosmological solutions.
  - Apply cosmological perturbation theory.

### Outlook

- Further cosmological calculations:
  - Analyze stability of cosmological solutions.
  - Apply cosmological perturbation theory.
- Improved simulations of structure formation:
  - Use GADGED-2 code for multimetric structure formation.
  - Include thermodynamics into simulation.

### Outlook

- Further cosmological calculations:
  - Analyze stability of cosmological solutions.
  - Apply cosmological perturbation theory.
- Improved simulations of structure formation:
  - Use GADGED-2 code for multimetric structure formation.
  - Include thermodynamics into simulation.
- Connection to observations:
  - Test multimetric cosmology against CMB fluctuations.
  - Peculiar motion of galaxies due to repulsive matter?
  - Repulsive matter distribution in voids from weak lensing?
  - Search for negative gravitational lenses.