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Why should we study gravity?

• Gravity is the dominating force in the universe:
◦ Solar system, planetary motion, binary systems. . .
◦ Galaxies, galactic clusters and superclusters, structure formation. . .
◦ Cosmology, evolution of the universe at early and late times. . .
◦ Gravitational collapse, star formation, black holes. . .

• Gravity is used in high-precision practical appliances:
◦ Global navigation satellite systems (GNSS): GPS, Glonass, BeiDou, Galileo.
◦ Remote sensing and resource exploration.
◦ Relativistic geodesy (atomic clocks and gravitational redshift).

• Numerous current and near future observations related to gravity:
◦ Cosmology: cosmic microwave background, supernovae, large scale structure surveys.
◦ Gravitational waves: black hole / neutron star mergers, collapse, primordial GW.
◦ Precision solar system and Earth orbit tests: frame dragging, equivalence principle.
◦ Direct observation of black holes and their surroundings.

• Unexplained experimental and theoretical tensions:

 modified gravity theories

◦ Cosmology: Big Bang, accelerating expansion, inflation, dark energy, dark matter.
◦ Unification of general relativity and quantum theory.
◦ Black holes: singularities, black hole information paradox.
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Why should we study gravity beyond general relativity?

• Gravity is the dominating force in the universe:
◦ Solar system, planetary motion, binary systems. . .
◦ Galaxies, galactic clusters and superclusters, structure formation. . .
◦ Cosmology, evolution of the universe at early and late times. . .
◦ Gravitational collapse, star formation, black holes. . .

• Gravity is used in high-precision practical appliances:
◦ Global navigation satellite systems (GNSS): GPS, Glonass, BeiDou, Galileo.
◦ Remote sensing and resource exploration.
◦ Relativistic geodesy (atomic clocks and gravitational redshift).

• Numerous current and near future observations related to gravity:
◦ Cosmology: cosmic microwave background, supernovae, large scale structure surveys.
◦ Gravitational waves: black hole / neutron star mergers, collapse, primordial GW.
◦ Precision solar system and Earth orbit tests: frame dragging, equivalence principle.
◦ Direct observation of black holes and their surroundings.

• Unexplained experimental and theoretical tensions:  modified gravity theories
◦ Cosmology: Big Bang, accelerating expansion, inflation, dark energy, dark matter.
◦ Unification of general relativity and quantum theory.
◦ Black holes: singularities, black hole information paradox.

Manuel Hohmann (University of Tartu) The geometric foundation of gravity 19. October 2020 4 / 35



Why does geometry offer the tools to model gravity?

What do we expect from the geometry of spacetime?
Spacetime geometry determines the notions of causality, observers and gravitation.

1. Causality:
◦ Points in spacetime! “events”, described by location and time.
◦ Causal relation: which events may influence which other events?
◦ Every event must have a causal past and future.

2. Observers:
◦ An observer must be able to measure physical quantities.
◦ Every observer possesses an inertial system, which determines measurements.
◦ Different observers must be able to translate measurements between their systems.

3. Gravitation:
◦ The distribution of the sources of gravity (matter) determines the spacetime geometry.
◦ The geometry of spacetime determines the motion of bodies (matter).
◦ Gravitational interaction! spacetime geometry.

⇒ Our description of geometry determines how we describe gravity.
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What is a manifold?

• All points of spacetime constitute a set M. . .

• . . . such that every event / point x ∈ M. . .
• . . . possesses a neighborhood U ⊂ M. . .
• . . . related to a subset V of Euclidean space Rn. . .
• . . . by a bijective (one-on-one) function φ. . .
• . . . which allows the definition of local coordinates.

Notions from differential geometry
• (U, φ)! chart.
• Collection A = {(U, φ)}! atlas.
• (M,A)! manifold.

M

x U

Rn

V

φ
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What is a tangent space?

• Every point x of M has a tangent space TxM.

• The tangent space TxM is a vector space.
• Equivalent descriptions of a tangent vector v ∈ TxM:

1. Velocity along a trajectory γ passing through x .
2. Directional derivative operator on functions at x .
3. Components vµ in a chart and their transformation.

M

TxM

τ

x

M

x
U U ′

RnRn V V ′

φ φ′

vµ v ′µ

M

R

γ

v = γ̇(t)

x = γ(t)

M
v

x
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Metric geometry - length, time & causality

• A metric g is a scalar product on every tangent space TxM:

g(u, v) = gµν(x)uµvν = ‖u‖‖v‖cos θ .

• Metric determines length ` of a curve γ between t1 and t2:

` =

∫ t2

t1

√
|g(γ̇(t), γ̇(t))|dt =

∫ t2

t1

√
|gµν(γ(t))γ̇µ(t)γ̇ν(t)|dt .

γ(t1)

γ(t2)

• Length of a trajectory `! time measured by moving clock.
• Metric determines causality and propagation of information:

g(v , v) > 0 g(v , v) = 0 g(v , v) < 0
spacelike lightlike (null) timelike

TxMu
v

θ

M

x

future

past
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Connections - parallel transport and autoparallel curves

• Tangent spaces TxM and TyM are different if x 6= y .

⇒ No possibility to compare u ∈ TxM and v ∈ TyM.
• Connection relates vectors in different tangent spaces.
• Parallel transport: transport of a vector along a curve.
• Autoparallel curve! parallel transport of tangent vector γ̇.

M
TxM TyM

u

v

u′
γ

x y

γ(t1)

γ(t2)

γ(t3)

γ(t4)

γ(t5)

γ̇(t1)

γ̇(t2)
γ̇(t3)

γ̇(t4)
γ̇(t5)
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Curvature: the dependence of parallel transport on the path

• Parallel transport of vector u from x to y . . .

• . . . in general depends on trajectory γ or γ̃.
• Curvature R measures difference between u′[γ] and u′[γ̃].
• For two autoparallel curves γ1 and γ2. . .
• . . . whose (infinitesimal) distance describes vector s. . .
• . . . the curvature measures the change of s along the curves.
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Torsion: the role of a non-symmetric parallel transport

• Given two vectors u, v in the same tangent space TxM. . .

• . . . one may transport u (infinitesimally) along v . . .
• . . . and likewise v (infinitesimally) along u. . .
• . . . but the result may not be the same.
• Difference between u′[v ] and v ′[u] given by torsion T .
• Torsion may influence particles with spin (fermions).

u

v

u′[v ]

v ′[u]

?
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Nonmetricity: connections which are not metric-compatible

• Notion requires two geometric objects:
◦ Metric determines length of tangent vectors.

◦ Connection determines parallel transport.

• Nonmetricity Q: covariant derivative of metric g:

Qρµν = ∇ρgµν .

• Geometric interpretation of Q 6= 0?
◦ Scalar product of vectors changes along transport:

gµνuµvν 6= g′µνu′µv ′ν .

◦ Length of vectors changes along transport:

‖u‖ 6= ‖u′‖ , ‖v‖ 6= ‖v ′‖ .

◦ Angle between vectors changes along transport:

θ 6= θ′ .

γ

u′µ

‖u′‖

v ′ν
‖v ′‖

θ′

uµ

‖u‖

vν

‖v‖

θ
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Connection decomposition: Levi-Civita, contortion and disformation

• In presence of a metric, a connection may be uniquely decomposed:

Γµνρ =
◦
Γµνρ + K µ

νρ + Lµνρ .

• Components of the connection:

1. Levi-Civita connection! metric:

◦
Γµνρ =

1
2

gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) .

2. Contortion! torsion:
Kµ

νρ =
1
2

(Tνµρ + Tρµν − Tµ
νρ) .

3. Disformation! nonmetricity:

Lµνρ =
1
2

(Qµ
νρ −Qν

µ
ρ −Qρ

µ
ν) .
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The Nobel Prize in Physics 2020

The Nobel Prize in Physics 2020
The Nobel Prize in Physics 2020 was divided, one half awarded to Roger Penrose “for the
discovery that black hole formation is a robust prediction of the general theory of
relativity”, the other half jointly to Reinhard Genzel and Andrea Ghez “for the discovery of
a supermassive compact object at the centre of our galaxy.”

1. How does general relativity describe gravity?
2. What is a black hole?
3. How do black holes form?
4. How does general relativity predict the formation of black holes?
5. What did Roger Penrose discover?
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Penrose’s singularity theorem (1965)

Singularity theorem:

relating physics to geometry

The formation of a singularity is unavoidable, if:
1. the null energy condition holds,

2. Einstein’s field equations are imposed:

Rµν −
1
2

Rgµν = 8πGΘµν ,

3. there exist trapped surfaces T 2,
4. there exists a Cauchy hypersurface C3.

C3 is a Cauchy hypersurface means:
• Every causal trajectory from M4

+ meets C3.
• Data on C3 fully determines the future M4

+.

R. Penrose, Phys. Rev. Lett. 14 (1965) 57.
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Energy conditions

1. Null energy condition:
◦ Projected energy density is non-negative.
◦ Θµνkµkν ≥ 0 if gµνkµkν = 0.

⇒ ρ+ p ≥ 0.

2. Weak energy condition:

◦ Observed energy density is non-negative.

◦ ΘµνXµX ν ≥ 0 if gµνXµX ν < 0.

⇒ ρ ≥ 0, ρ+ p ≥ 0.

3. Dominant energy condition:

◦ Flow of energy is not faster than light.

◦ Condition 2 holds and −ΘµνXν  future.

⇒ ρ ≥ |p|.

4. Strong energy condition:

◦ Geodesic trajectories converge.

◦
(
Θµν − 1

2 Θgµν
)

XµX ν ≥ 0 if gµνXµX ν < 0.

⇒ ρ+ p ≥ 0, ρ+ 3p ≥ 0.

• Example - perfect fluid:

Θµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 .

• Classical fluids (ρ > 0):

◦ Dust: p = 0.
◦ Radiation: p = 1

3ρ.
◦ Vacuum energy: p = −ρ.

⇒ Dark energy violates 4.
• Quantum field theory:

◦ “Quantum inequalities” hold.
◦ Averaged energy density.
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Trapped surfaces

What is a “trapped surface”?
• Closed, spacelike, two-dimensional surface T .
• Light propagates only inwards from T .

k+
k−

p

T

Geometric description of a trapped surface

• Spacelike surface T : tangent vectors p ‖ T are spacelike: g(p,p) > 0.
⇒ There are 2 vectors k± which satisfy:

◦ The vectors are surface normals k± ⊥ T : g(k±,p) = 0.
◦ The vectors are null (lightlike): g(k+, k+) = g(k−, k−) = 0.
◦ The vectors are future-directed.
◦ The spatial component of the vectors points inwards from T .

⇒ The vectors k± describe the propagation of light; all light from T moves inwards.
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Singularities and geodesic (in)completeness

• Test bodies and observers follow trajectories t 7→ xµ(t) in spacetime.

• Co-moving clock shows proper time s:

ds
dt

=
√
−gµν(x(t))ẋµ(t)ẋν(t) .

• Free fall: trajectory is geodesic curve; extremal of the length functional:

s2 − s1 =

∫ s2

s1

ds =

∫ t2

t1

√
−gµν(x(t))ẋµ(t)ẋν(t)dt .

• Spacetime is geodesically complete, if every geodesic can be infinitely extended.
• A singularity is defined by geodesic incompleteness of spacetime.
⇒ A singularity is a region in spacetime. . .

◦ which is reached by an observer in finite proper time,
◦ from where on the free-fall trajectory cannot be further extended.

 In presence of singularities, the fate of free-fall observers is not determinable!
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• Spacetime is geodesically complete, if every geodesic can be infinitely extended.

• A singularity is defined by geodesic incompleteness of spacetime.
⇒ A singularity is a region in spacetime. . .

◦ which is reached by an observer in finite proper time,
◦ from where on the free-fall trajectory cannot be further extended.

 In presence of singularities, the fate of free-fall observers is not determinable!

Manuel Hohmann (University of Tartu) The geometric foundation of gravity 19. October 2020 20 / 35



Singularities and geodesic (in)completeness

• Test bodies and observers follow trajectories t 7→ xµ(t) in spacetime.
• Co-moving clock shows proper time s:

ds
dt

=
√
−gµν(x(t))ẋµ(t)ẋν(t) .
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General relativity: gravity described by curvature

• Curvature of the Levi-Civita connection:
◦
Rµ

νρσ = ∂ρ
◦
Γµνσ − ∂σ

◦
Γµνρ +

◦
Γµτρ

◦
Γτ νσ −

◦
Γµτσ

◦
Γτ νρ .

• Ricci tensor and scalar:
◦
Rµν =

◦
Rρ

µρν ,
◦
R = gµνRµν .

• Einstein-Hilbert action:

S =
1

16πG

∫
M

d4x
√
− det g

◦
R + Smatter .

⇒ Einstein equations:
◦
Rµν −

1
2

◦
Rgµν = 8πGΘµν .

• Energy-momentum tensor:

δSmatter =
1
2

∫
M

d4x
√
− det gδgµνΘµν .
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The road to teleparallelism

• Curvature of a general connection:

Rµ
νρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓµτρΓτ νσ − ΓµτσΓτ νρ .

• Decomposition of the curvature:

Rµ
νρσ =

◦
Rµ

νρσ +
◦
∇ρ(K µ

νσ + Lµνσ)−
◦
∇σ(K µ

νρ + Lµνρ)

+ (K µ
ωρ + Lµωρ)(Kω

νσ + Lωνσ)− (K µ
ωσ + Lµωσ)(Kω

νρ + Lωνρ) .

• Two special cases:

1. Metric teleparallel geometry; Rµ
νρσ = 0, Lµνρ = 0:

◦
Rµ

νρσ = Kµ
ωσKω

νρ − Kµ
ωρKω

νσ +
◦
∇σKµ

νρ −
◦
∇ρKµ

νσ ,

◦
R = Tµ

µρTννρ −
1
2

TµνρTρνµ −
1
4

TµνρTµνρ + 2
◦
∇µTννµ .

2. Symmetric teleparallel geometry; Rµ
νρσ = 0, Kµ

νρ = 0:
◦
Rµ

νρσ = LµωσLωνρ − LµωρLωνσ +
◦
∇σLµνρ −

◦
∇ρLµνσ ,

◦
R =

1
4

Qρµ
µQρν

ν − 1
2

Qρµ
µQν

νρ +
1
2

QµνρQνµρ −
1
4

QµνρQµνρ +
◦
∇µQν

νµ −
◦
∇µQµν

ν .
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Teleparallel gravity

• The teleparallel equivalent of general relativity:
◦ Recall Einstein-Hilbert action of general relativity:

SEH =
1

16πG

∫
M

d4x
√
− det g

◦
R .

◦ Make use of identity
◦
R = −T+

◦
∇µBµT .

◦ Boundary term
◦
∇µBµT does not contribute to field equations.

⇒ Omit boundary term to obtain action of the teleparallel equivalent of GR.
• The symmetric teleparallel equivalent of general relativity:

◦ Recall Einstein-Hilbert action of general relativity:

SEH =
1

16πG

∫
M

d4x
√
− det g

◦
R .

◦ Make use of identity
◦
R = −Q+

◦
∇µBµQ .

◦ Boundary term
◦
∇µBµQ does not contribute to field equations.

⇒ Omit boundary term to obtain action of the symmetric teleparallel equivalent of GR.
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The “zoo” of modified gravity theories

Lorentz violation Lorentz invariance

higher spin

spin 2 gravitation

massless spin 2 massive spin 2

LV massive grav.

ghost condensate

Horava-Lifshitz

extended HL

cuscutonFinsler
partiallly
massless

spin 3

massive
graviton-
galileon

Horndeski

galileon

DBI-galileon

multi-galileon

Brans-Dicke

f (R)chameleon

symmetron

cascad. grav.

DGP massive grav.

quasi-dilaton bi-/multi-grav.
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The f (. . .) family of gravity theories

• Action with higher order (curvature, torsion, nonmetricity) terms:
◦ Possible effects from quantum gravity, Feynman diagrams with loops.
◦ New dynamical effects in cosmology modeling inflation and dark energy.
◦ Modification of the strong gravity regime capable of avoiding singularities.

 Replace Lagrangian L ∼
◦
R,T,Q by f (

◦
R), f (T), f (Q).

• Relation between different extensions?
◦ Original Lagrangians differ only by boundary terms:

−T+
◦
∇µBµT =

◦
R = −Q+

◦
∇µBµQ .

⇒ Corresponding equivalent theories:

f (−T+
◦
∇µBµT ) = f (

◦
R) = f (−Q+

◦
∇µBµQ) .

◦ f (T) and f (Q) Lagrangians lead to essentially different theories.
◦ Difference cannot be moved into boundary term⇒ different field equations.

Manuel Hohmann (University of Tartu) The geometric foundation of gravity 19. October 2020 27 / 35



The f (. . .) family of gravity theories

• Action with higher order (curvature, torsion, nonmetricity) terms:
◦ Possible effects from quantum gravity, Feynman diagrams with loops.
◦ New dynamical effects in cosmology modeling inflation and dark energy.
◦ Modification of the strong gravity regime capable of avoiding singularities.

 Replace Lagrangian L ∼
◦
R,T,Q by f (

◦
R), f (T), f (Q).

• Relation between different extensions?
◦ Original Lagrangians differ only by boundary terms:

−T+
◦
∇µBµT =

◦
R = −Q+

◦
∇µBµQ .

⇒ Corresponding equivalent theories:

f (−T+
◦
∇µBµT ) = f (

◦
R) = f (−Q+

◦
∇µBµQ) .

◦ f (T) and f (Q) Lagrangians lead to essentially different theories.
◦ Difference cannot be moved into boundary term⇒ different field equations.

Manuel Hohmann (University of Tartu) The geometric foundation of gravity 19. October 2020 27 / 35



The f (. . .) family of gravity theories

• Action with higher order (curvature, torsion, nonmetricity) terms:
◦ Possible effects from quantum gravity, Feynman diagrams with loops.
◦ New dynamical effects in cosmology modeling inflation and dark energy.
◦ Modification of the strong gravity regime capable of avoiding singularities.

 Replace Lagrangian L ∼
◦
R,T,Q by f (

◦
R), f (T), f (Q).

• Relation between different extensions?
◦ Original Lagrangians differ only by boundary terms:

−T+
◦
∇µBµT =

◦
R = −Q+

◦
∇µBµQ .

⇒ Corresponding equivalent theories:

f (−T+
◦
∇µBµT ) = f (

◦
R) = f (−Q+

◦
∇µBµQ) .

◦ f (T) and f (Q) Lagrangians lead to essentially different theories.
◦ Difference cannot be moved into boundary term⇒ different field equations.

Manuel Hohmann (University of Tartu) The geometric foundation of gravity 19. October 2020 27 / 35



Coupling scalar fields
• Why consider scalar fields Φ non-minimally coupled to gravity?

◦ Scalar fields are simplest possibility to add another degree of freedom.
◦ Discovery of the Higgs boson showed existence of fundamental scalar fields.
◦ Scalar fields appear in effective description of other (e.g., string, quantum) theories.
◦ f (. . .) theories can be expressed as scalar-tensor gravity theories.
◦ Conformal transformations of spacetime may be modeled using scalar fields.
◦ Screening effects may suppress scalar field interaction at solar system scales.

• Scalar field extensions of different formulations of GR:
◦ Scalar-curvature gravity:

SSCG =
1

16πG

∫
M

d4x
√
− det g

[
A(Φ)

◦
R − B(Φ)gµν∂µΦ∂νΦ− V(Φ)

]
.

◦ Scalar-torsion gravity:

SSTG =
1

16πG

∫
M

d4x
√
− det g

[
−A(Φ)T−

(
B(Φ)

◦
∇µΦ− 2C(Φ)Tννµ

) ◦
∇µΦ− V(Φ)

]
.

◦ Scalar-nonmetricity gravity:

SSNG =
1

16πG

∫
M

d4x
√
− det g

[
−A(Φ)Q−

(
B(Φ)

◦
∇µΦ− 2C(Φ)Qν

νµ − 2D(Φ)Qµν
ν

) ◦
∇µΦ− V(Φ)

]
.
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New GR, newer GR and even newer theories

• More general theories constructible from torsion terms:
◦ “New general relativity”:

L = c1TµνρTµνρ + c2TµνρTρνµ + c3Tµ
µρTννρ .

◦ Generalized new general relativity:

L = f (TµνρTµνρ,TµνρTρνµ,Tµ
µρTννρ) .

◦ Additional coupling of scalar fields, free function of first order derivative terms. . .

• More general theories constructible from nonmetricity terms:
◦ “Newer general relativity”:

L = b1QµνρQµνρ + b2QµνρQρνµ + b3Qµ
µρQν

νρ + b4Qµ
µρQρν

ν + b5Qρµ
µQρν

ν .

◦ Generalized new general relativity:

L = f (QµνρQµνρ,QµνρQρνµ,Qµ
µρQν

νρ,Qµ
µρQρν

ν ,Qρµ
µQρν

ν) .

◦ Additional coupling of scalar fields, free function of first order derivative terms. . .
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Non-equivalence of modified gravity theories

• Different geometric formulations of general relativity. . .

• but extensions based on these geometries. . .

L ∼
◦
R

L ∼ T L ∼ Q

L ∼ f (
◦
R), scalar-curvature. . .

L ∼ f (T), scalar-torsion. . . L ∼ f (Q), scalar-nonmetricity. . .

∼= ∼=

∼=

� �

�
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Non-equivalence of modified gravity theories

• Different geometric formulations of general relativity are equivalent,
• but extensions based on these geometries are not.

L ∼
◦
R

L ∼ T L ∼ Q

L ∼ f (
◦
R), scalar-curvature. . .

L ∼ f (T), scalar-torsion. . . L ∼ f (Q), scalar-nonmetricity. . .

∼= ∼=

∼=

� �

�
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Gravity based on observers and gases: Finsler geometry

• Recall length functional in Riemannian geometry:

` =

∫ t2

t1

√
|gµν(γ(t))γ̇µ(t)γ̇ν(t)|dt .

• Length functional fully determines several physical quantities:
◦ Causality of a curve: sign of the term under the integral.
◦ Proper time (shown by a co-moving clock) along a trajectory.
◦ Free-fall trajectories given by extremal curves of length functional.

 Consider more general length function F (x , y) on the tangent bundle TM.
⇒ Gravity described by geometric objects and action on the tangent bundle.
• Source term in the gravitational field equations on TM replacing Θµν?

◦ Kinetic theory of gases: gas constituted by particles following geodesic trajectories.
◦ Continuum limit: gas modeled by density on particle phase space (positions, velocities).
◦ One-particle distribution function on TM becomes natural candidate for source term.
◦ Possible to address unsolved questions in gravity and cosmology from new geometry?
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A unified picture: Cartan geometry

• Cartan geometry: how a hamster sitting in a ball describes geometry.

• Possible ways the hamster can move in the ball: Lie group G.
• Motions of the hamster not moving the ball: subgroup H ⊂ G.
• Cartan connection A measures, how motions of hamster move the ball.

• Deviation of surface from ball geometry:

F = dA +
1
2

[A,A] .

• Action functional in Cartan geometry:

S =

∫
M
κ(Fh ∧ ?Fh) .

• Unified model of previous geometries.
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Summary

• Gravity is one of the most interesting fields to study:
◦ Most observations and dynamical processes in the universe dominated by gravity.
◦ Current and future technologies make direct use of gravity.
◦ Running and upcoming high precision experiments to study gravitational interaction.
◦ Several open questions from both observations and theoretical aspects.

• Gravitational interaction can be described by geometry:
◦ Differential geometry provides all notions to model physical quantities.
◦ Gravitational dynamics described by action for geometric objects (metric, connection).

• General relativity:
◦ Original formulation models gravity as curvature of Levi-Civita connection.
◦ Equivalent formulations using torsion and nonmetricity of flat connection exist.

• Modified gravity - beyond general relativity:
◦ Numerous models exist to address open questions in cosmology and quantum gravity.
◦ Various possible ways to extend general relativity using curvature, torsion, nonmetricity.
◦ Extensions based on different geometric formulations are not equivalent.
◦ Beyond Riemannian metric geometry: Finsler geometry models observers and gases.
◦ Unified description of all approaches using Cartan geometry.

• Nobel Prize in Physics 2020 for using geometry to prove fundamental physics.
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The road ahead: from the cosmos to quantum gravity

• New geometries provide new insights into well-known problems:
◦ How to describe the singularities at the Big Bang and black holes?
◦ How to solve the information paradoxes related to black hole horizons?
◦ What drives the accelerating expansion of the universe at early and late times?
◦ What is the common theory describing all interactions (gravity and particle physics)?
◦ How can one construct a consistent theory of quantum gravity?

• What are the advantages of modeling gravity with new geometries?
◦ Gravity as a gauge theory: new similarities with particle physics:

· Electromagnetism, weak and strong nuclear force modeled by gauge theories.
· A common description of all forces requires a similar description of gravity.

◦ A first order action does not require a boundary term (Gibbons-Hawking-York):
· A boundary term does not enter the field equations, but affects horizons and Casimir effect.
· Alternative description of black hole entropy and thermodynamics.

◦ A common description using Cartan geometry may pave the path to quantization:
· Loop Quantum Gravity: canonical quantization of gravity based on Ashtekar variables.
· Ashtekar variables may be defined naturally in Cartan geometry.

⇒ Understanding gravity as geometry is a crucial part of today’s physics.
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