The geometric foundation of gravity

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

Physikalisches Kolloquium Universität Oldenburg - 19. October 2020

Introduction

- 2 Building blocks of differential geometry
- 3 A Nobel Prize for geometry
- 4 Three pathways to general relativity
- 5 Going beyond general relativity

Conclusion

Outline

Introduction

- 2 Building blocks of differential geometry
- 3 A Nobel Prize for geometry
- 4 Three pathways to general relativity
- 5 Going beyond general relativity

Conclusion

- Gravity is the dominating force in the universe:
 - Solar system, planetary motion, binary systems...
 - Galaxies, galactic clusters and superclusters, structure formation...
 - Cosmology, evolution of the universe at early and late times...
 - Gravitational collapse, star formation, black holes...

- Gravity is the dominating force in the universe:
 - Solar system, planetary motion, binary systems...
 - Galaxies, galactic clusters and superclusters, structure formation...
 - Cosmology, evolution of the universe at early and late times...
 - Gravitational collapse, star formation, black holes...
- Gravity is used in high-precision practical appliances:
 - Global navigation satellite systems (GNSS): GPS, Glonass, BeiDou, Galileo.
 - Remote sensing and resource exploration.
 - Relativistic geodesy (atomic clocks and gravitational redshift).

- Gravity is the dominating force in the universe:
 - Solar system, planetary motion, binary systems...
 - Galaxies, galactic clusters and superclusters, structure formation...
 - Cosmology, evolution of the universe at early and late times...
 - Gravitational collapse, star formation, black holes...
- Gravity is used in high-precision practical appliances:
 - Global navigation satellite systems (GNSS): GPS, Glonass, BeiDou, Galileo.
 - Remote sensing and resource exploration.
 - Relativistic geodesy (atomic clocks and gravitational redshift).
- Numerous current and near future observations related to gravity:
 - Cosmology: cosmic microwave background, supernovae, large scale structure surveys.
 - o Gravitational waves: black hole / neutron star mergers, collapse, primordial GW.
 - Precision solar system and Earth orbit tests: frame dragging, equivalence principle.
 - Direct observation of black holes and their surroundings.

- Gravity is the dominating force in the universe:
 - Solar system, planetary motion, binary systems...
 - Galaxies, galactic clusters and superclusters, structure formation...
 - Cosmology, evolution of the universe at early and late times...
 - Gravitational collapse, star formation, black holes...
- Gravity is used in high-precision practical appliances:
 - Global navigation satellite systems (GNSS): GPS, Glonass, BeiDou, Galileo.
 - Remote sensing and resource exploration.
 - Relativistic geodesy (atomic clocks and gravitational redshift).
- Numerous current and near future observations related to gravity:
 - Cosmology: cosmic microwave background, supernovae, large scale structure surveys.
 - o Gravitational waves: black hole / neutron star mergers, collapse, primordial GW.
 - Precision solar system and Earth orbit tests: frame dragging, equivalence principle.
 - $\circ~$ Direct observation of black holes and their surroundings.
- Unexplained experimental and theoretical tensions:
 - Cosmology: Big Bang, accelerating expansion, inflation, dark energy, dark matter.
 - Unification of general relativity and quantum theory.
 - Black holes: singularities, black hole information paradox.

Why should we study gravity beyond general relativity?

- Gravity is the dominating force in the universe:
 - Solar system, planetary motion, binary systems...
 - Galaxies, galactic clusters and superclusters, structure formation...
 - Cosmology, evolution of the universe at early and late times...
 - Gravitational collapse, star formation, black holes...
- Gravity is used in high-precision practical appliances:
 - Global navigation satellite systems (GNSS): GPS, Glonass, BeiDou, Galileo.
 - Remote sensing and resource exploration.
 - Relativistic geodesy (atomic clocks and gravitational redshift).
- Numerous current and near future observations related to gravity:
 - Cosmology: cosmic microwave background, supernovae, large scale structure surveys.
 - o Gravitational waves: black hole / neutron star mergers, collapse, primordial GW.
 - Precision solar system and Earth orbit tests: frame dragging, equivalence principle.
 - Direct observation of black holes and their surroundings.
- Unexplained experimental and theoretical tensions: --- modified gravity theories
 - Cosmology: Big Bang, accelerating expansion, inflation, dark energy, dark matter.
 - Unification of general relativity and quantum theory.
 - Black holes: singularities, black hole information paradox.

What do we expect from the geometry of spacetime?

What do we expect from the geometry of spacetime?

- 1. Causality:
 - ∘ Points in spacetime ↔ "events", described by location and time.
 - Causal relation: which events may influence which other events?
 - Every event must have a causal past and future.

What do we expect from the geometry of spacetime?

- 1. Causality:
 - Points in spacetime ++++ "events", described by location and time.
 - · Causal relation: which events may influence which other events?
 - Every event must have a causal past and future.
- 2. Observers:
 - An observer must be able to measure physical quantities.
 - Every observer possesses an inertial system, which determines measurements.
 - Different observers must be able to translate measurements between their systems.

What do we expect from the geometry of spacetime?

- 1. Causality:
 - Points in spacetime ↔ "events", described by location and time.
 - · Causal relation: which events may influence which other events?
 - Every event must have a causal past and future.
- 2. Observers:
 - An observer must be able to measure physical quantities.
 - Every observer possesses an inertial system, which determines measurements.
 - Different observers must be able to translate measurements between their systems.
- 3. Gravitation:
 - The distribution of the sources of gravity (matter) determines the spacetime geometry.
 - $\circ~$ The geometry of spacetime determines the motion of bodies (matter).
 - o Gravitational interaction ↔ spacetime geometry.

What do we expect from the geometry of spacetime?

- 1. Causality included in the geometry of special relativity:
 - ∘ Points in spacetime ↔ "events", described by location and time.
 - · Causal relation: which events may influence which other events?
 - Every event must have a causal past and future.
- 2. Observers included in the geometry of special relativity:
 - An observer must be able to measure physical quantities.
 - Every observer possesses an inertial system, which determines measurements.
 - Different observers must be able to translate measurements between their systems.
- 3. Gravitation included in the geometry of general relativity:
 - The distribution of the sources of gravity (matter) determines the spacetime geometry.
 - The geometry of spacetime determines the motion of bodies (matter).
 - Gravitational interaction ++++ spacetime geometry.

What do we expect from the geometry of spacetime?

Spacetime geometry determines the notions of causality, observers and gravitation.

- 1. Causality included in the geometry of special relativity:
 - Points in spacetime ↔ "events", described by location and time.
 - · Causal relation: which events may influence which other events?
 - Every event must have a causal past and future.
- 2. Observers included in the geometry of special relativity:
 - An observer must be able to measure physical quantities.
 - Every observer possesses an inertial system, which determines measurements.
 - Different observers must be able to translate measurements between their systems.
- 3. Gravitation included in the geometry of general relativity:
 - The distribution of the sources of gravity (matter) determines the spacetime geometry.
 - $\circ~$ The geometry of spacetime determines the motion of bodies (matter).
 - Gravitational interaction ++++ spacetime geometry.

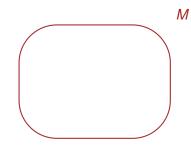
 \Rightarrow Our description of geometry determines how we describe gravity.

Introduction

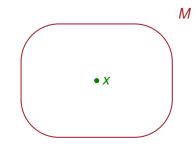
- 2 Building blocks of differential geometry
- 3 A Nobel Prize for geometry
- 4 Three pathways to general relativity
- 5 Going beyond general relativity

6 Conclusion

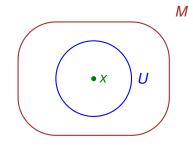
• All points of spacetime constitute a set M...



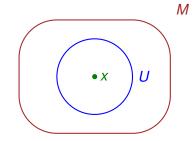
- All points of spacetime constitute a set M...
- ... such that every event / point $x \in M$...

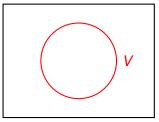


- All points of spacetime constitute a set M...
- ... such that every event / point $x \in M$...
- ... possesses a neighborhood $U \subset M$...

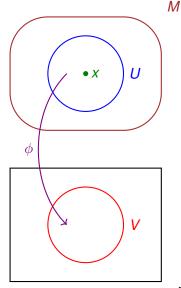


- All points of spacetime constitute a set M...
- ... such that every event / point $x \in M$...
- ... possesses a neighborhood $U \subset M$...
- ... related to a subset V of Euclidean space \mathbb{R}^n ...

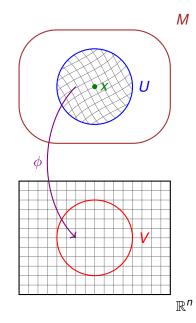




- All points of spacetime constitute a set M...
- ... such that every event / point $x \in M$...
- ... possesses a neighborhood $U \subset M$...
- ... related to a subset V of Euclidean space \mathbb{R}^n ...
- ... by a bijective (one-on-one) function ϕ ...



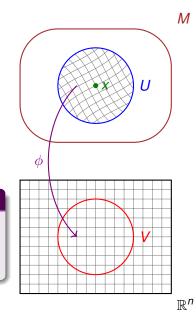
- All points of spacetime constitute a set M...
- ... such that every event / point $x \in M$...
- ... possesses a neighborhood $U \subset M$...
- ... related to a subset V of Euclidean space \mathbb{R}^n ...
- ... by a bijective (one-on-one) function ϕ ...
- ... which allows the definition of local coordinates.



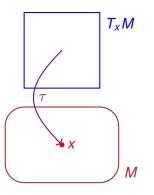
- All points of spacetime constitute a set M...
- ... such that every event / point $x \in M$...
- ... possesses a neighborhood $U \subset M$...
- ... related to a subset V of Euclidean space \mathbb{R}^n ...
- ... by a bijective (one-on-one) function ϕ ...
- ... which allows the definition of local coordinates.

Notions from differential geometry

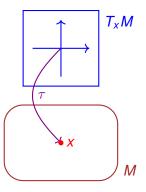
- (U, φ) ↔ chart.
- Collection $\mathcal{A} = \{(U, \phi)\} \iff$ atlas.
- $(M, \mathcal{A}) \iff$ manifold.



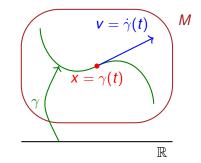
• Every point x of M has a tangent space $T_X M$.

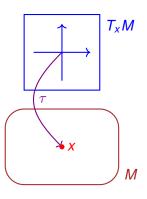


- Every point x of M has a tangent space $T_X M$.
- The tangent space $T_X M$ is a vector space.

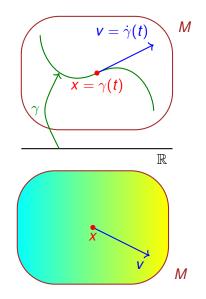


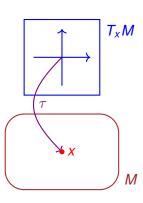
- Every point x of M has a tangent space $T_x M$.
- The tangent space $T_X M$ is a vector space.
- Equivalent descriptions of a tangent vector $v \in T_x M$:
 - 1. Velocity along a trajectory γ passing through \mathbf{x} .



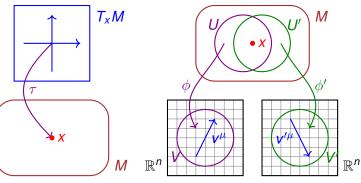


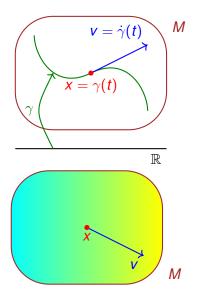
- Every point x of M has a tangent space $T_x M$.
- The tangent space $T_X M$ is a vector space.
- Equivalent descriptions of a tangent vector $v \in T_x M$:
 - 1. Velocity along a trajectory γ passing through \mathbf{x} .
 - 2. Directional derivative operator on functions at x.





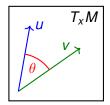
- Every point x of M has a tangent space $T_X M$.
- The tangent space $T_X M$ is a vector space.
- Equivalent descriptions of a tangent vector $v \in T_x M$:
 - 1. Velocity along a trajectory γ passing through \mathbf{x} .
 - 2. Directional derivative operator on functions at x.
 - 3. Components v^{μ} in a chart and their transformation.





• A metric g is a scalar product on every tangent space $T_x M$:

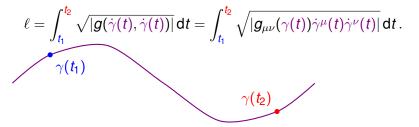
 $g(\boldsymbol{u},\boldsymbol{v})=g_{\mu\nu}(\boldsymbol{x})\boldsymbol{u}^{\mu}\boldsymbol{v}^{\nu}=\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta.$

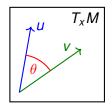


• A metric g is a scalar product on every tangent space $T_x M$:

 $g(\boldsymbol{u},\boldsymbol{v})=g_{\mu\nu}(\boldsymbol{x})\boldsymbol{u}^{\mu}\boldsymbol{v}^{\nu}=\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta.$

• Metric determines length ℓ of a curve γ between t_1 and t_2 :

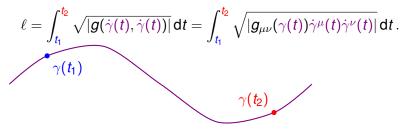




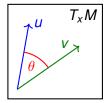
• A metric g is a scalar product on every tangent space $T_x M$:

 $g(\boldsymbol{u},\boldsymbol{v})=g_{\mu\nu}(\boldsymbol{x})\boldsymbol{u}^{\mu}\boldsymbol{v}^{\nu}=\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta.$

• Metric determines length ℓ of a curve γ between t_1 and t_2 :



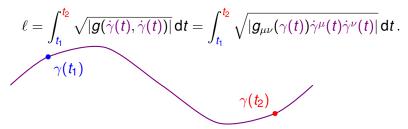
• Length of a trajectory $\ell \iff$ time measured by moving clock.



• A metric g is a scalar product on every tangent space $T_X M$:

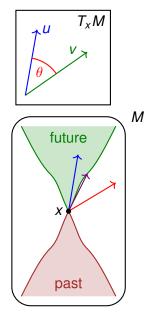
 $g(\boldsymbol{u},\boldsymbol{v})=g_{\mu\nu}(\boldsymbol{x})\boldsymbol{u}^{\mu}\boldsymbol{v}^{\nu}=\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta.$

• Metric determines length ℓ of a curve γ between t_1 and t_2 :

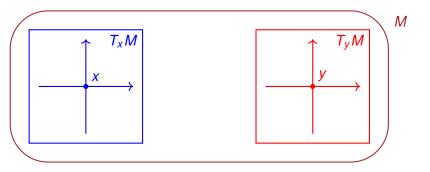


- Length of a trajectory $\ell \iff$ time measured by moving clock.
- Metric determines causality and propagation of information: |g(y,y) > 0 | g(y,y) = 0 | g(y,y) < 0 |

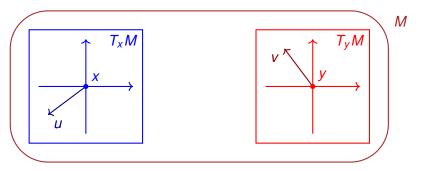
 $\frac{g(v, v) > 0}{\text{spacelike}} \quad \frac{g(v, v) = 0}{\text{lightlike (null)}} \quad \frac{g(v, v) < 0}{\text{timelike}}$



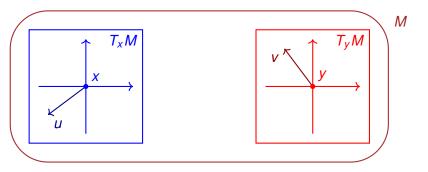
• Tangent spaces $T_x M$ and $T_y M$ are different if $x \neq y$.



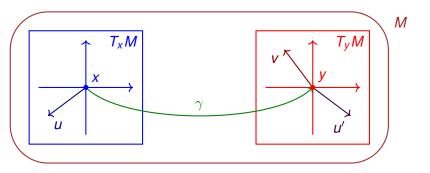
- Tangent spaces $T_x M$ and $T_y M$ are different if $x \neq y$.
- \Rightarrow No possibility to compare $u \in T_x M$ and $v \in T_y M$.



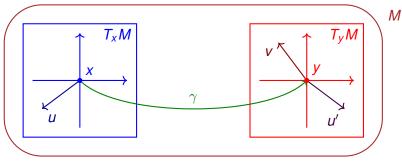
- Tangent spaces $T_x M$ and $T_y M$ are different if $x \neq y$.
- \Rightarrow No possibility to compare $u \in T_x M$ and $v \in T_y M$.
- Connection relates vectors in different tangent spaces.

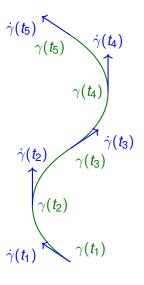


- Tangent spaces $T_x M$ and $T_y M$ are different if $x \neq y$.
- \Rightarrow No possibility to compare $u \in T_x M$ and $v \in T_y M$.
- Connection relates vectors in different tangent spaces.
- Parallel transport: transport of a vector along a curve.

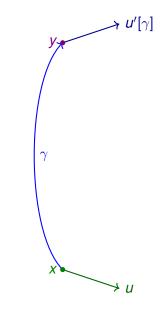


- Tangent spaces $T_x M$ and $T_y M$ are different if $x \neq y$.
- ⇒ No possibility to compare $u \in T_x M$ and $v \in T_y M$.
- Connection relates vectors in different tangent spaces.
- Parallel transport: transport of a vector along a curve.
- Autoparallel curve $\leftrightarrow \Rightarrow$ parallel transport of tangent vector $\dot{\gamma}$.

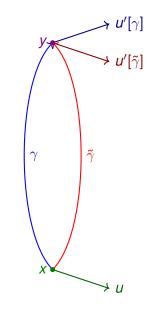




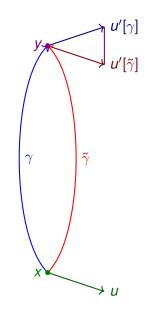
• Parallel transport of vector *u* from *x* to *y*...

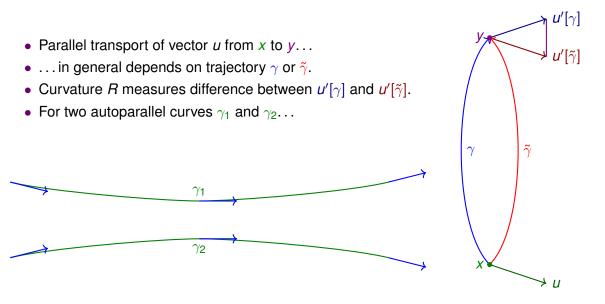


- Parallel transport of vector *u* from *x* to *y*...
- ... in general depends on trajectory γ or $\tilde{\gamma}$.

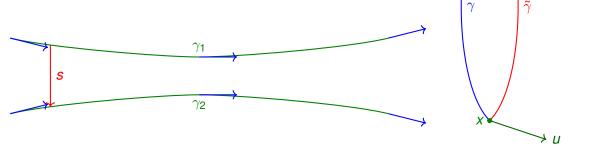


- Parallel transport of vector *u* from *x* to *y*...
- ... in general depends on trajectory γ or $\tilde{\gamma}$.
- Curvature *R* measures difference between $u'[\gamma]$ and $u'[\tilde{\gamma}]$.





- Parallel transport of vector *u* from *x* to *y*...
- ... in general depends on trajectory γ or $\tilde{\gamma}$.
- Curvature R measures difference between u'[γ] and u'[γ].
- For two autoparallel curves γ₁ and γ₂...
- ... whose (infinitesimal) distance describes vector s...



- Parallel transport of vector *u* from *x* to *y*...
- ... in general depends on trajectory γ or $\tilde{\gamma}$.
- Curvature *R* measures difference between $u'[\gamma]$ and $u'[\tilde{\gamma}]$.
- For two autoparallel curves γ₁ and γ₂...
- ... whose (infinitesimal) distance describes vector s...

 γ_1

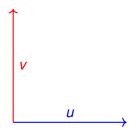
 γ_2

• ... the curvature measures the change of s along the curves.

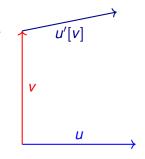
U

 $u'[\gamma]$

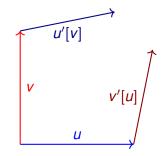
• Given two vectors u, v in the same tangent space $T_X M...$



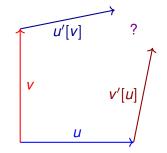
- Given two vectors u, v in the same tangent space $T_x M...$
- ... one may transport u (infinitesimally) along v...



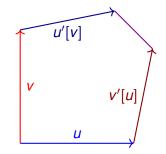
- Given two vectors u, v in the same tangent space $T_x M...$
- ... one may transport *u* (infinitesimally) along *v*...
- ... and likewise \mathbf{v} (infinitesimally) along \mathbf{u} ...



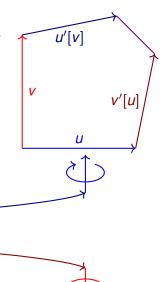
- Given two vectors u, v in the same tangent space $T_x M...$
- ... one may transport *u* (infinitesimally) along *v*...
- ... and likewise \mathbf{v} (infinitesimally) along \mathbf{u} ...
- ... but the result may not be the same.



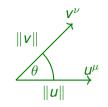
- Given two vectors u, v in the same tangent space $T_x M...$
- ... one may transport *u* (infinitesimally) along *v*...
- ... and likewise \mathbf{v} (infinitesimally) along \mathbf{u} ...
- ... but the result may not be the same.
- Difference between u'[v] and v'[u] given by torsion T.



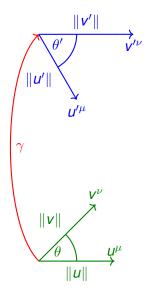
- Given two vectors u, v in the same tangent space $T_X M...$
- ... one may transport *u* (infinitesimally) along *v*...
- ... and likewise \mathbf{v} (infinitesimally) along \mathbf{u} ...
- ... but the result may not be the same.
- Difference between u'[v] and v'[u] given by torsion *T*.
- Torsion may influence particles with spin (fermions).



- Notion requires two geometric objects:
 - Metric determines length of tangent vectors.

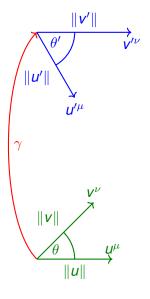


- Notion requires two geometric objects:
 - Metric determines length of tangent vectors.
 - Connection determines parallel transport.



- Notion requires two geometric objects:
 - Metric determines length of tangent vectors.
 - Connection determines parallel transport.
- Nonmetricity *Q*: covariant derivative of metric *g*:

$$\mathbf{Q}_{
ho\mu
u} =
abla_{
ho} \mathbf{g}_{\mu
u} \, .$$



- Notion requires two geometric objects:
 - Metric determines length of tangent vectors.
 - Connection determines parallel transport.
- Nonmetricity Q: covariant derivative of metric g:

$$oldsymbol{Q}_{
ho\mu
u} =
abla_{
ho}oldsymbol{g}_{\mu
u}$$
 .

- Geometric interpretation of $Q \neq 0$?
 - Scalar product of vectors changes along transport:

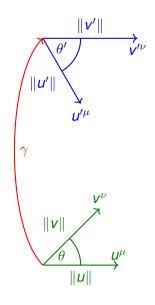
 $g_{\mu
u}u^{\mu}v^{
u}\neq g_{\mu
u}'^{\mu}v'^{
u}$.

Length of vectors changes along transport:

 $||u|| \neq ||u'||, ||v|| \neq ||v'||.$

Angle between vectors changes along transport:

$$\theta \neq \theta'$$
.



• In presence of a metric, a connection may be uniquely decomposed:

$$\Gamma^{\mu}{}_{\nu\rho} = \overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho}.$$

• In presence of a metric, a connection may be uniquely decomposed:

$$\Gamma^{\mu}{}_{\nu\rho} = \overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,.$$

- Components of the connection:
 - 1. Levi-Civita connection ++++ metric:

$$\overset{\,\,{}_\circ}{\Gamma}^{\mu}{}_{\nu\rho}=\frac{1}{2}g^{\mu\sigma}\left(\partial_{\nu}g_{\sigma\rho}+\partial_{\rho}g_{\nu\sigma}-\partial_{\sigma}g_{\nu\rho}\right).$$

• In presence of a metric, a connection may be uniquely decomposed:

$$\Gamma^{\mu}{}_{\nu\rho} = \overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho}.$$

- Components of the connection:
 - 1. Levi-Civita connection +---> metric:

$$\overset{\,\,{}_\circ}{\Gamma}^{\mu}{}_{
u
ho}=rac{1}{2}g^{\mu\sigma}\left(\partial_{
u}g_{\sigma
ho}+\partial_{
ho}g_{
u\sigma}-\partial_{\sigma}g_{
u
ho}
ight).$$

2. Contortion *constant* torsion:

$$K^{\mu}{}_{\nu\rho} = \frac{1}{2} \left(T_{\nu}{}^{\mu}{}_{\rho} + T_{\rho}{}^{\mu}{}_{\nu} - T^{\mu}{}_{\nu\rho} \right).$$

• In presence of a metric, a connection may be uniquely decomposed:

$$\Gamma^{\mu}{}_{\nu\rho} = \overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,.$$

- Components of the connection:
 - 1. Levi-Civita connection ++++ metric:

$$\overset{\,\,{}_\circ}{\Gamma}^{\mu}{}_{
u
ho}=rac{1}{2}g^{\mu\sigma}\left(\partial_{
u}g_{\sigma
ho}+\partial_{
ho}g_{
u\sigma}-\partial_{\sigma}g_{
u
ho}
ight).$$

2. Contortion ++++ torsion:

$$K^{\mu}{}_{\nu\rho} = \frac{1}{2} \left(T_{\nu}{}^{\mu}{}_{\rho} + T_{\rho}{}^{\mu}{}_{\nu} - T^{\mu}{}_{\nu\rho} \right).$$

3. Disformation +++ nonmetricity:

$$L^{\mu}{}_{\nu
ho} = rac{1}{2} \left(Q^{\mu}{}_{
u
ho} - Q_{
u}{}^{\mu}{}_{
ho} - Q_{
ho}{}^{\mu}{}_{
u}
ight).$$

Introduction

- 2 Building blocks of differential geometry
- 3 A Nobel Prize for geometry
- 4 Three pathways to general relativity
- 5 Going beyond general relativity

Conclusion

The Nobel Prize in Physics 2020 was divided, one half awarded to Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity", the other half jointly to Reinhard Genzel and Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy."

1. How does general relativity describe gravity?

- 1. How does general relativity describe gravity?
- 2. What is a black hole?

- 1. How does general relativity describe gravity?
- 2. What is a black hole?
- 3. How do black holes form?

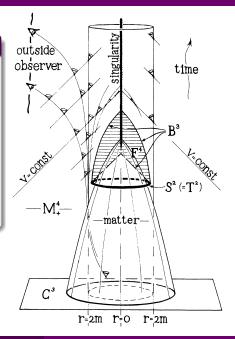
- 1. How does general relativity describe gravity?
- 2. What is a black hole?
- 3. How do black holes form?
- 4. How does general relativity predict the formation of black holes?

- 1. How does general relativity describe gravity?
- 2. What is a black hole?
- 3. How do black holes form?
- 4. How does general relativity predict the formation of black holes?
- 5. What did Roger Penrose discover?

Singularity theorem:

The formation of a singularity is unavoidable, if:

1. the null energy condition holds,

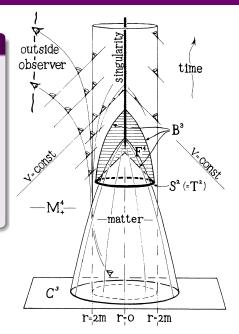


Singularity theorem:

The formation of a singularity is unavoidable, if:

- 1. the null energy condition holds,
- 2. Einstein's field equations are imposed:

$$R_{\mu
u}-rac{1}{2}Rg_{\mu
u}=8\pi G\Theta_{\mu
u}\,,$$



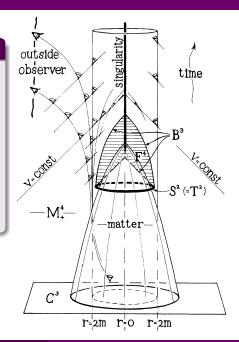
Singularity theorem:

The formation of a singularity is unavoidable, if:

- 1. the null energy condition holds,
- 2. Einstein's field equations are imposed:

$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G\Theta_{\mu\nu}\,,$$

3. there exist trapped surfaces T^2 ,



Singularity theorem:

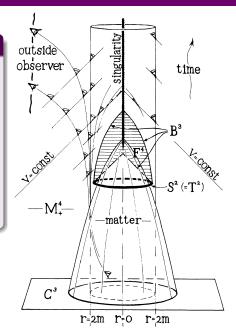
The formation of a singularity is unavoidable, if:

- 1. the null energy condition holds,
- 2. Einstein's field equations are imposed:

$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G\Theta_{\mu\nu}\,,$$

3. there exist trapped surfaces T^2 ,

4. there exists a Cauchy hypersurface C^3 .



Singularity theorem:

The formation of a singularity is unavoidable, if:

- 1. the null energy condition holds,
- 2. Einstein's field equations are imposed:

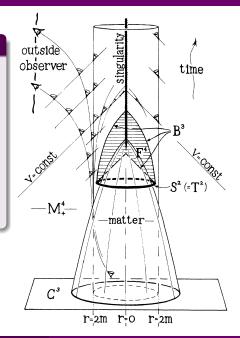
$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G\Theta_{\mu\nu}\,,$$

3. there exist trapped surfaces T^2 ,

4. there exists a Cauchy hypersurface C^3 .

 C^3 is a Cauchy hypersurface means:

- Every causal trajectory from M_+^4 meets C^3 .
- Data on C^3 fully determines the future M_+^4 .



Singularity theorem: relating physics

The formation of a singularity is unavoidable, if:

- 1. the null energy condition holds,
- 2. Einstein's field equations are imposed:

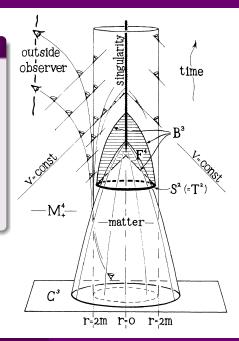
$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G\Theta_{\mu\nu}\,,$$

3. there exist trapped surfaces T^2 ,

4. there exists a Cauchy hypersurface C^3 .

 C^3 is a Cauchy hypersurface means:

- Every causal trajectory from M_+^4 meets C^3 .
- Data on C^3 fully determines the future M^4_+ .



Singularity theorem: relating physics to geometry

The formation of a singularity is unavoidable, if:

- 1. the null energy condition holds,
- 2. Einstein's field equations are imposed:

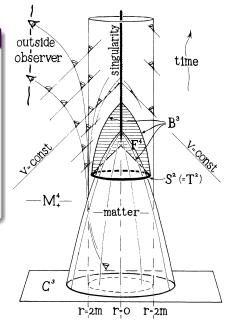
$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G\Theta_{\mu\nu}\,,$$

3. there exist trapped surfaces T^2 ,

4. there exists a Cauchy hypersurface C^3 .

 C^3 is a Cauchy hypersurface means:

- Every causal trajectory from M_+^4 meets C^3 .
- Data on C^3 fully determines the future M^4_+ .



Energy conditions

- 1. Null energy condition:
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u} \geq 0$ if $g_{\mu
 u}k^{\mu}k^{
 u} = 0$.

Energy conditions

- 1. Null energy condition:
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0 ext{ if } g_{\mu
 u}k^{\mu}k^{
 u}=0.$
- 2. Weak energy condition:
 - Observed energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}X^{\mu}X^{
 u}\geq 0 ext{ if } g_{\mu
 u}X^{\mu}X^{
 u}< 0.$

- 1. Null energy condition:
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0 ext{ if } g_{\mu
 u}k^{\mu}k^{
 u}=0.$
- 2. Weak energy condition:
 - Observed energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}X^{\mu}X^{
 u}\geq 0 ext{ if } g_{\mu
 u}X^{\mu}X^{
 u}< 0.$
- 3. Dominant energy condition:
 - Flow of energy is not faster than light.
 - Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu} \rightsquigarrow$ future.

- 1. Null energy condition:
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0$ if $g_{\mu
 u}k^{\mu}k^{
 u}=0.$
- 2. Weak energy condition:
 - Observed energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}X^{\mu}X^{
 u}\geq 0 ext{ if } g_{\mu
 u}X^{\mu}X^{
 u}< 0.$
- 3. Dominant energy condition:
 - Flow of energy is not faster than light.
 - Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu} \rightsquigarrow$ future.
- 4. Strong energy condition:
 - Geodesic trajectories converge.
 - $\circ \ \left(\Theta_{\mu\nu}-\tfrac{1}{2}\Theta g_{\mu\nu}\right)X^{\mu}X^{\nu}\geq 0 \text{ if } g_{\mu\nu}X^{\mu}X^{\nu}<0.$

- 1. Null energy condition:
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu\nu}k^{\mu}k^{\nu} \geq 0 \text{ if } g_{\mu\nu}k^{\mu}k^{\nu} = 0.$
 - $\Rightarrow \rho + p \ge 0.$
- 2. Weak energy condition:
 - Observed energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}X^{\mu}X^{
 u}\geq 0 ext{ if } g_{\mu
 u}X^{\mu}X^{
 u}< 0.$
 - $\Rightarrow \rho \geq \mathbf{0}, \rho + \mathbf{p} \geq \mathbf{0}.$
- 3. Dominant energy condition:
 - Flow of energy is not faster than light.
 - $\circ~$ Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu}\rightsquigarrow$ future.

 $\Rightarrow \rho \geq |\mathbf{p}|.$

- 4. Strong energy condition:
 - Geodesic trajectories converge.

$$\circ \ \left(\Theta_{\mu\nu}-\tfrac{1}{2}\Theta g_{\mu\nu}\right)X^{\mu}X^{\nu}\geq 0 \text{ if } g_{\mu\nu}X^{\mu}X^{\nu}<0.$$

 $\Rightarrow \rho + p \ge 0, \rho + 3p \ge 0.$

$$\Theta^{\mu
u}=egin{pmatrix}
ho&0&0&0\0&p&0&0\0&0&p&0\0&0&0&p\end{pmatrix}$$

- 1. Null energy condition: ✓
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0 ext{ if } g_{\mu
 u}k^{\mu}k^{
 u}=0.$
 - $\Rightarrow \
 ho + p \ge 0.$
- 2. Weak energy condition: \checkmark
 - Observed energy density is non-negative.

$$\circ \ \Theta_{\mu
u}X^{\mu}X^{
u}\geq 0 ext{ if } g_{\mu
u}X^{\mu}X^{
u}< 0.$$

- $\Rightarrow \rho \geq 0, \rho + p \geq 0.$
- 3. Dominant energy condition: √
 - Flow of energy is not faster than light.
 - $\circ~$ Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu}\rightsquigarrow$ future.
 - $\Rightarrow \rho \ge |\mathbf{p}|.$
- 4. Strong energy condition: ✓
 - Geodesic trajectories converge.

$$\circ \left(\Theta_{\mu\nu} - \frac{1}{2}\Theta g_{\mu\nu}\right) X^{\mu}X^{\nu} \geq 0 \text{ if } g_{\mu\nu}X^{\mu}X^{\nu} < 0.$$

 $\Rightarrow \rho + p \ge 0, \rho + 3p \ge 0.$

$$\Theta^{\mu
u}=egin{pmatrix}
ho&0&0&0\0&p&0&0\0&0&p&0\0&0&p&0\0&0&0&p\end{pmatrix}$$

- 1. Null energy condition: ✓
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0 ext{ if } g_{\mu
 u}k^{\mu}k^{
 u}=0.$
 - $\Rightarrow \
 ho + p \ge 0.$
- 2. Weak energy condition: \checkmark
 - Observed energy density is non-negative.

$$\circ \ \Theta_{\mu
u}X^{\mu}X^{
u}\geq 0 ext{ if } g_{\mu
u}X^{\mu}X^{
u}< 0.$$

- $\Rightarrow \rho \geq 0, \rho + p \geq 0.$
- 3. Dominant energy condition: 🗸
 - Flow of energy is not faster than light.
 - Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu} \rightsquigarrow$ future.
 - $\Rightarrow \ \rho \geq |\mathbf{p}|.$
- 4. Strong energy condition: \checkmark
 - Geodesic trajectories converge.

$$\circ \left(\Theta_{\mu\nu} - \frac{1}{2}\Theta g_{\mu\nu}\right) X^{\mu}X^{\nu} \geq 0 \text{ if } g_{\mu\nu}X^{\mu}X^{\nu} < 0.$$

 $\Rightarrow \rho + p \ge 0, \rho + 3p \ge 0.$

$$\Theta^{\mu
u}=egin{pmatrix}
ho&0&0&0\0&p&0&0\0&0&p&0\0&0&p&0\0&0&0&p\end{pmatrix}$$

- Classical fluids ($\rho > 0$):
 - Dust: *p* = 0.
 - Radiation: $p = \frac{1}{3}\rho$.

- 1. Null energy condition: ✓
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0 ext{ if } g_{\mu
 u}k^{\mu}k^{
 u}=0.$
 - $\Rightarrow \
 ho + p \ge 0.$
- 2. Weak energy condition: \checkmark
 - Observed energy density is non-negative.

$$\circ \ \Theta_{\mu
u}X^{\mu}X^{
u}\geq 0 ext{ if } g_{\mu
u}X^{\mu}X^{
u}< 0.$$

- $\Rightarrow \rho \geq 0, \rho + p \geq 0.$
- 3. Dominant energy condition: 🗸
 - Flow of energy is not faster than light.
 - Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu} \rightsquigarrow$ future.

 $\Rightarrow \rho \ge |\mathbf{p}|.$

- 4. Strong energy condition: 4
 - Geodesic trajectories converge.

$$\circ \ \left(\Theta_{\mu\nu}-\tfrac{1}{2}\Theta g_{\mu\nu}\right)X^{\mu}X^{\nu}\geq 0 \text{ if } g_{\mu\nu}X^{\mu}X^{\nu}<0.$$

 $\Rightarrow \rho + p \ge 0, \rho + 3p \ge 0.$

$$\Theta^{\mu
u}=egin{pmatrix}
ho&0&0&0\0&p&0&0\0&0&p&0\0&0&p&0\0&0&0&p\end{pmatrix}$$

- Classical fluids (ρ > 0):
 - Dust: p = 0.
 - Radiation: $p = \frac{1}{3}\rho$.
 - Vacuum energy: $p = -\rho$.

- 1. Null energy condition: ✓
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0 ext{ if } g_{\mu
 u}k^{\mu}k^{
 u}=0.$
 - $\Rightarrow \
 ho + p \ge 0.$
- 2. Weak energy condition: \checkmark
 - Observed energy density is non-negative.

$$\circ \ \Theta_{\mu
u}X^{\mu}X^{
u}\geq 0 ext{ if } g_{\mu
u}X^{\mu}X^{
u}< 0.$$

- $\Rightarrow \ \rho \ge \mathbf{0}, \ \rho + \mathbf{p} \ge \mathbf{0}.$
- 3. Dominant energy condition: ✓
 - Flow of energy is not faster than light.
 - Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu} \rightsquigarrow$ future.
 - $\Rightarrow \ \rho \geq |\mathbf{p}|.$
- 4. Strong energy condition: $\frac{1}{2}$
 - Geodesic trajectories converge.

$$\circ \ \left(\Theta_{\mu\nu}-\tfrac{1}{2}\Theta g_{\mu\nu}\right)X^{\mu}X^{\nu}\geq 0 \text{ if } g_{\mu\nu}X^{\mu}X^{\nu}<0.$$

 $\Rightarrow \rho + p \geq 0, \rho + 3p \geq 0.$

$$\Theta^{\mu
u}=egin{pmatrix}
ho&0&0&0\0&p&0&0\0&0&p&0\0&0&p&0\0&0&0&p\end{pmatrix}$$

- Classical fluids (ρ > 0):
 - Dust: p = 0.
 - Radiation: $p = \frac{1}{3}\rho$.
 - Vacuum energy: $p = -\rho$.
- \Rightarrow Dark energy violates 4.

- 1. Null energy condition:
 - Projected energy density is non-negative.
 - $\circ \ \Theta_{\mu
 u}k^{\mu}k^{
 u}\geq 0 ext{ if } g_{\mu
 u}k^{\mu}k^{
 u}=0.$
 - $\Rightarrow \rho + p \ge 0.$
- 2. Weak energy condition:
 - Observed energy density is non-negative.

$$\circ ~~ \Theta_{\mu
u}X^{\mu}X^{
u}\geq 0 ext{ if } g_{\mu
u}X^{\mu}X^{
u}< 0.$$

- $\Rightarrow \rho \ge \mathbf{0}, \rho + \mathbf{p} \ge \mathbf{0}.$
- 3. Dominant energy condition:
 - Flow of energy is not faster than light.
 - $\circ~$ Condition 2 holds and $-\Theta^{\mu\nu}X_{\nu} \rightsquigarrow$ future.
 - $\Rightarrow \rho \ge |\mathbf{p}|.$
- 4. Strong energy condition:
 - Geodesic trajectories converge.

$$\circ \left(\Theta_{\mu\nu} - \frac{1}{2}\Theta g_{\mu\nu}\right) X^{\mu}X^{\nu} \ge 0 \text{ if } g_{\mu\nu}X^{\mu}X^{\nu} < 0.$$

$$\Rightarrow \rho + p \ge 0, \rho + 3p \ge 0.$$

$$\Theta^{\mu
u}=egin{pmatrix}
ho&0&0&0\0&p&0&0\0&0&p&0\0&0&p&0\0&0&0&p \end{pmatrix}$$

- Classical fluids (ρ > 0):
 - Dust: p = 0.
 - Radiation: $p = \frac{1}{3}\rho$.
 - Vacuum energy: $p = -\rho$.
- \Rightarrow Dark energy violates 4.
 - Quantum field theory:
 - "Quantum inequalities" hold.
 - Averaged energy density.

- Closed, spacelike, two-dimensional surface T.
- Light propagates only inwards from *T*.

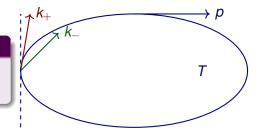
- Closed, spacelike, two-dimensional surface T.
- Light propagates only inwards from *T*.

Geometric description of a trapped surface

Spacelike surface *T*: tangent vectors *p* || *T* are spacelike: *g*(*p*, *p*) > 0.

р

- Closed, spacelike, two-dimensional surface T.
- Light propagates only inwards from T.



Geometric description of a trapped surface

- Spacelike surface *T*: tangent vectors *p* || *T* are spacelike: *g*(*p*, *p*) > 0.
- \Rightarrow There are 2 vectors k_{\pm} which satisfy:
 - The vectors are surface normals $k_{\pm} \perp T$: $g(k_{\pm}, p) = 0$.
 - The vectors are null (lightlike): $g(k_+, k_+) = g(k_-, k_-) = 0$.
 - The vectors are future-directed.
 - The spatial component of the vectors points inwards from T.

- Closed, spacelike, two-dimensional surface T.
- Light propagates only inwards from T.



Geometric description of a trapped surface

- Spacelike surface *T*: tangent vectors *p* || *T* are spacelike: *g*(*p*, *p*) > 0.
- \Rightarrow There are 2 vectors k_{\pm} which satisfy:
 - The vectors are surface normals $k_{\pm} \perp T$: $g(k_{\pm}, p) = 0$.
 - The vectors are null (lightlike): $g(k_+, k_+) = g(k_-, k_-) = 0$.
 - The vectors are future-directed.
 - $\circ~$ The spatial component of the vectors points inwards from T.
- \Rightarrow The vectors k_{\pm} describe the propagation of light; all light from T moves inwards.

• Test bodies and observers follow trajectories $t \mapsto x^{\mu}(t)$ in spacetime.

- Test bodies and observers follow trajectories $t \mapsto x^{\mu}(t)$ in spacetime.
- Co-moving clock shows proper time s:

$$rac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)}$$

- Test bodies and observers follow trajectories $t \mapsto x^{\mu}(t)$ in spacetime.
- Co-moving clock shows proper time s:

$$rac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)}$$

• Free fall: trajectory is geodesic curve; extremal of the length functional:

$$s_2 - s_1 = \int_{s_1}^{s_2} \mathrm{d}s = \int_{t_1}^{t_2} \sqrt{-g_{\mu\nu}(x(t))\dot{x}^{\mu}(t)\dot{x}^{\nu}(t)}\mathrm{d}t$$

- Test bodies and observers follow trajectories $t \mapsto x^{\mu}(t)$ in spacetime.
- Co-moving clock shows proper time s:

$$rac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)}$$

• Free fall: trajectory is geodesic curve; extremal of the length functional:

$$s_2 - s_1 = \int_{s_1}^{s_2} \mathrm{d}s = \int_{t_1}^{t_2} \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)} \mathrm{d}t$$

• Spacetime is geodesically complete, if every geodesic can be infinitely extended.

- Test bodies and observers follow trajectories $t \mapsto x^{\mu}(t)$ in spacetime.
- Co-moving clock shows proper time s:

$$rac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)}$$

• Free fall: trajectory is geodesic curve; extremal of the length functional:

$$s_2 - s_1 = \int_{s_1}^{s_2} \mathrm{d}s = \int_{t_1}^{t_2} \sqrt{-g_{\mu\nu}(x(t))\dot{x}^{\mu}(t)\dot{x}^{\nu}(t)} \mathrm{d}t$$

- Spacetime is geodesically complete, if every geodesic can be infinitely extended.
- A singularity is defined by geodesic incompleteness of spacetime.

- Test bodies and observers follow trajectories $t \mapsto x^{\mu}(t)$ in spacetime.
- Co-moving clock shows proper time s:

$$rac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)}$$

• Free fall: trajectory is geodesic curve; extremal of the length functional:

$$s_2 - s_1 = \int_{s_1}^{s_2} \mathrm{d}s = \int_{t_1}^{t_2} \sqrt{-g_{\mu\nu}(x(t))\dot{x}^{\mu}(t)\dot{x}^{\nu}(t)} \mathrm{d}t$$

- Spacetime is geodesically complete, if every geodesic can be infinitely extended.
- A singularity is defined by geodesic incompleteness of spacetime.
- \Rightarrow A singularity is a region in spacetime...
 - o which is reached by an observer in finite proper time,
 - $\circ~$ from where on the free-fall trajectory cannot be further extended.

- Test bodies and observers follow trajectories $t \mapsto x^{\mu}(t)$ in spacetime.
- Co-moving clock shows proper time s:

$$rac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)}$$

• Free fall: trajectory is geodesic curve; extremal of the length functional:

$$s_2 - s_1 = \int_{s_1}^{s_2} \mathrm{d}s = \int_{t_1}^{t_2} \sqrt{-g_{\mu
u}(x(t))\dot{x}^{\mu}(t)\dot{x}^{
u}(t)} \mathrm{d}t$$

- Spacetime is geodesically complete, if every geodesic can be infinitely extended.
- A singularity is defined by geodesic incompleteness of spacetime.
- \Rightarrow A singularity is a region in spacetime...
 - $\circ\;$ which is reached by an observer in finite proper time,
 - $\circ~$ from where on the free-fall trajectory cannot be further extended.

i In presence of singularities, the fate of free-fall observers is not determinable!

Introduction

- 2 Building blocks of differential geometry
- 3 A Nobel Prize for geometry
- 4 Three pathways to general relativity
- 5 Going beyond general relativity

Conclusion

• Curvature of the Levi-Civita connection:

$$\mathring{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\mathring{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\mathring{\Gamma}^{\mu}{}_{\nu\rho} + \mathring{\Gamma}^{\mu}{}_{\tau\rho}\mathring{\Gamma}^{\tau}{}_{\nu\sigma} - \mathring{\Gamma}^{\mu}{}_{\tau\sigma}\mathring{\Gamma}^{\tau}{}_{\nu\rho}.$$

• Curvature of the Levi-Civita connection:

$$\mathring{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\mathring{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\mathring{\Gamma}^{\mu}{}_{\nu\rho} + \mathring{\Gamma}^{\mu}{}_{\tau\rho}\mathring{\Gamma}^{\tau}{}_{\nu\sigma} - \mathring{\Gamma}^{\mu}{}_{\tau\sigma}\mathring{\Gamma}^{\tau}{}_{\nu\rho}.$$

• Ricci tensor and scalar:

$$\overset{\circ}{R}_{\mu
u} = \overset{\circ}{R}^{
ho}{}_{\mu
ho
u}, \quad \overset{\circ}{R} = g^{\mu
u}R_{\mu
u}.$$

• Curvature of the Levi-Civita connection:

$$\mathring{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\mathring{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\mathring{\Gamma}^{\mu}{}_{\nu\rho} + \mathring{\Gamma}^{\mu}{}_{\tau\rho}\mathring{\Gamma}^{\tau}{}_{\nu\sigma} - \mathring{\Gamma}^{\mu}{}_{\tau\sigma}\mathring{\Gamma}^{\tau}{}_{\nu\rho}.$$

• Ricci tensor and scalar:

$$\overset{\circ}{R}_{\mu
u} = \overset{\circ}{R}^{
ho}{}_{\mu
ho
u}, \quad \overset{\circ}{R} = g^{\mu
u}R_{\mu
u}.$$

• Einstein-Hilbert action:

$$S = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} \mathring{R} + S_{\mathrm{matter}} \, .$$

• Curvature of the Levi-Civita connection:

$$\mathring{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\mathring{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\mathring{\Gamma}^{\mu}{}_{\nu\rho} + \mathring{\Gamma}^{\mu}{}_{\tau\rho}\mathring{\Gamma}^{\tau}{}_{\nu\sigma} - \mathring{\Gamma}^{\mu}{}_{\tau\sigma}\mathring{\Gamma}^{\tau}{}_{\nu\rho}.$$

• Ricci tensor and scalar:

$$\overset{\circ}{R}_{\mu
u} = \overset{\circ}{R}^{
ho}{}_{\mu
ho
u}, \quad \overset{\circ}{R} = g^{\mu
u}R_{\mu
u}.$$

• Einstein-Hilbert action:

$$S = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} \mathring{R} + S_{\mathrm{matter}} \, .$$

 \Rightarrow Einstein equations:

$$\mathring{R}_{\mu\nu} - \frac{1}{2}\mathring{R}g_{\mu\nu} = 8\pi G\Theta_{\mu\nu}.$$

• Curvature of the Levi-Civita connection:

$$\mathring{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\mathring{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\mathring{\Gamma}^{\mu}{}_{\nu\rho} + \mathring{\Gamma}^{\mu}{}_{\tau\rho}\mathring{\Gamma}^{\tau}{}_{\nu\sigma} - \mathring{\Gamma}^{\mu}{}_{\tau\sigma}\mathring{\Gamma}^{\tau}{}_{\nu\rho}.$$

• Ricci tensor and scalar:

$$\overset{\circ}{R}_{\mu
u} = \overset{\circ}{R}^{
ho}{}_{\mu
ho
u}, \quad \overset{\circ}{R} = g^{\mu
u}R_{\mu
u}.$$

• Einstein-Hilbert action:

$$S = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} \mathring{R} + S_{\mathrm{matter}} \, .$$

 \Rightarrow Einstein equations:

$$\mathring{R}_{\mu\nu} - \frac{1}{2} \mathring{R} g_{\mu\nu} = 8\pi G \Theta_{\mu\nu}.$$

• Energy-momentum tensor:

$$\delta S_{\text{matter}} = rac{1}{2} \int_M \mathrm{d}^4 x \sqrt{-\det g} \delta g_{\mu
u} \Theta^{\mu
u} \,.$$

• Curvature of a general connection:

$$\boldsymbol{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\boldsymbol{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\boldsymbol{\Gamma}^{\mu}{}_{\nu\rho} + \boldsymbol{\Gamma}^{\mu}{}_{\tau\rho}\boldsymbol{\Gamma}^{\tau}{}_{\nu\sigma} - \boldsymbol{\Gamma}^{\mu}{}_{\tau\sigma}\boldsymbol{\Gamma}^{\tau}{}_{\nu\rho}.$$

• Curvature of a general connection:

$$\mathcal{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho}\Gamma^{\tau}{}_{\nu\sigma} - \Gamma^{\mu}{}_{\tau\sigma}\Gamma^{\tau}{}_{\nu\rho}.$$

• Decomposition of the curvature:

$$\begin{split} \boldsymbol{R}^{\mu}{}_{\nu\rho\sigma} &= \overset{\circ}{\boldsymbol{R}}{}^{\mu}{}_{\nu\rho\sigma} + \overset{\circ}{\nabla}_{\rho}(\boldsymbol{K}^{\mu}{}_{\nu\sigma} + \boldsymbol{L}^{\mu}{}_{\nu\sigma}) - \overset{\circ}{\nabla}_{\sigma}(\boldsymbol{K}^{\mu}{}_{\nu\rho} + \boldsymbol{L}^{\mu}{}_{\nu\rho}) \\ &+ (\boldsymbol{K}^{\mu}{}_{\omega\rho} + \boldsymbol{L}^{\mu}{}_{\omega\rho})(\boldsymbol{K}^{\omega}{}_{\nu\sigma} + \boldsymbol{L}^{\omega}{}_{\nu\sigma}) - (\boldsymbol{K}^{\mu}{}_{\omega\sigma} + \boldsymbol{L}^{\mu}{}_{\omega\sigma})(\boldsymbol{K}^{\omega}{}_{\nu\rho} + \boldsymbol{L}^{\omega}{}_{\nu\rho}) \,. \end{split}$$

• Curvature of a general connection:

$$\mathcal{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho}\Gamma^{\tau}{}_{\nu\sigma} - \Gamma^{\mu}{}_{\tau\sigma}\Gamma^{\tau}{}_{\nu\rho}.$$

• Decomposition of the curvature:

$$\begin{split} \mathcal{R}^{\mu}{}_{\nu\rho\sigma} &= \mathring{\mathcal{R}}^{\mu}{}_{\nu\rho\sigma} + \mathring{\nabla}_{\rho}(\mathcal{K}^{\mu}{}_{\nu\sigma} + \mathcal{L}^{\mu}{}_{\nu\sigma}) - \mathring{\nabla}_{\sigma}(\mathcal{K}^{\mu}{}_{\nu\rho} + \mathcal{L}^{\mu}{}_{\nu\rho}) \\ &+ (\mathcal{K}^{\mu}{}_{\omega\rho} + \mathcal{L}^{\mu}{}_{\omega\rho})(\mathcal{K}^{\omega}{}_{\nu\sigma} + \mathcal{L}^{\omega}{}_{\nu\sigma}) - (\mathcal{K}^{\mu}{}_{\omega\sigma} + \mathcal{L}^{\mu}{}_{\omega\sigma})(\mathcal{K}^{\omega}{}_{\nu\rho} + \mathcal{L}^{\omega}{}_{\nu\rho}) \,. \end{split}$$

Two special cases:

1. Metric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $L^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= K^{\mu}{}_{\omega\sigma}K^{\omega}{}_{\nu\rho} - K^{\mu}{}_{\omega\rho}K^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}K^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}K^{\mu}{}_{\nu\sigma} ,\\ \mathring{R} &= T^{\mu}{}_{\mu\rho}T^{\nu\rho}{}_{\nu} - \frac{1}{2}T^{\mu\nu\rho}T_{\rho\nu\mu} - \frac{1}{4}T^{\mu\nu\rho}T_{\mu\nu\rho} + 2\mathring{\nabla}_{\mu}T^{\nu\mu}{}_{\nu} . \end{split}$$

• Curvature of a general connection:

$$\mathcal{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho}\Gamma^{\tau}{}_{\nu\sigma} - \Gamma^{\mu}{}_{\tau\sigma}\Gamma^{\tau}{}_{\nu\rho}.$$

• Decomposition of the curvature:

$$\begin{split} \mathcal{R}^{\mu}{}_{\nu\rho\sigma} &= \mathring{\mathcal{R}}^{\mu}{}_{\nu\rho\sigma} + \mathring{\nabla}_{\rho}(\mathcal{K}^{\mu}{}_{\nu\sigma} + \mathcal{L}^{\mu}{}_{\nu\sigma}) - \mathring{\nabla}_{\sigma}(\mathcal{K}^{\mu}{}_{\nu\rho} + \mathcal{L}^{\mu}{}_{\nu\rho}) \\ &+ (\mathcal{K}^{\mu}{}_{\omega\rho} + \mathcal{L}^{\mu}{}_{\omega\rho})(\mathcal{K}^{\omega}{}_{\nu\sigma} + \mathcal{L}^{\omega}{}_{\nu\sigma}) - (\mathcal{K}^{\mu}{}_{\omega\sigma} + \mathcal{L}^{\mu}{}_{\omega\sigma})(\mathcal{K}^{\omega}{}_{\nu\rho} + \mathcal{L}^{\omega}{}_{\nu\rho}) \,. \end{split}$$

- Two special cases:
 - 1. Metric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $L^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= K^{\mu}{}_{\omega\sigma}K^{\omega}{}_{\nu\rho} - K^{\mu}{}_{\omega\rho}K^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}K^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}K^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= T^{\mu}{}_{\mu\rho}T^{\nu\rho}{}_{\nu} - \frac{1}{2}T^{\mu\nu\rho}T_{\rho\nu\mu} - \frac{1}{4}T^{\mu\nu\rho}T_{\mu\nu\rho} + 2\mathring{\nabla}_{\mu}T^{\nu\mu}{}_{\nu} \,. \end{split}$$

2. Symmetric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $K^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= L^{\mu}{}_{\omega\sigma}L^{\omega}{}_{\nu\rho} - L^{\mu}{}_{\omega\rho}L^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}L^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}L^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= \frac{1}{4}Q^{\rho\mu}{}_{\mu}Q_{\rho\nu}{}^{\nu} - \frac{1}{2}Q^{\rho\mu}{}_{\mu}Q^{\nu}{}_{\nu\rho} + \frac{1}{2}Q^{\mu\nu\rho}Q_{\nu\mu\rho} - \frac{1}{4}Q^{\mu\nu\rho}Q_{\mu\nu\rho} + \mathring{\nabla}_{\mu}Q_{\nu}{}^{\nu\mu} - \mathring{\nabla}_{\mu}Q^{\mu\nu}{}_{\nu} \,. \end{split}$$

• Curvature of a general connection:

$$\mathcal{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho}\Gamma^{\tau}{}_{\nu\sigma} - \Gamma^{\mu}{}_{\tau\sigma}\Gamma^{\tau}{}_{\nu\rho}.$$

• Decomposition of the curvature:

$$egin{aligned} \mathcal{R}^{\mu}{}_{
u
ho\sigma} &= \overset{\circ}{\mathcal{R}}^{\mu}{}_{
u
ho\sigma} + \overset{\circ}{
abla}_{
ho}(\mathcal{K}^{\mu}{}_{
u\sigma} + \mathcal{L}^{\mu}{}_{
u\sigma}) - \overset{\circ}{
abla}_{\sigma}(\mathcal{K}^{\mu}{}_{
u
ho} + \mathcal{L}^{\mu}{}_{
u
ho}) &+ (\mathcal{K}^{\mu}{}_{\omega
ho} + \mathcal{L}^{\mu}{}_{\omega
ho})(\mathcal{K}^{\omega}{}_{
u\sigma} + \mathcal{L}^{\omega}{}_{
u\sigma}) - (\mathcal{K}^{\mu}{}_{\omega\sigma} + \mathcal{L}^{\mu}{}_{\omega\sigma})(\mathcal{K}^{\omega}{}_{
u
ho} + \mathcal{L}^{\omega}{}_{
u
ho})\,. \end{aligned}$$

- Two special cases:
 - 1. Metric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $L^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= K^{\mu}{}_{\omega\sigma}K^{\omega}{}_{\nu\rho} - K^{\mu}{}_{\omega\rho}K^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}K^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}K^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= T^{\mu}{}_{\mu\rho}T_{\nu}{}^{\nu\rho} - \frac{1}{2}T^{\mu\nu\rho}T_{\rho\nu\mu} - \frac{1}{4}T^{\mu\nu\rho}T_{\mu\nu\rho} + 2\mathring{\nabla}_{\mu}T_{\nu}{}^{\nu\mu} \,. \end{split}$$

2. Symmetric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $K^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= L^{\mu}{}_{\omega\sigma}L^{\omega}{}_{\nu\rho} - L^{\mu}{}_{\omega\rho}L^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}L^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}L^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= \frac{1}{4}Q^{\rho\mu}{}_{\mu}Q_{\rho\nu}{}^{\nu} - \frac{1}{2}Q^{\rho\mu}{}_{\mu}Q^{\nu}{}_{\nu\rho} + \frac{1}{2}Q^{\mu\nu\rho}Q_{\nu\mu\rho} - \frac{1}{4}Q^{\mu\nu\rho}Q_{\mu\nu\rho} + \mathring{\nabla}_{\mu}Q_{\nu}{}^{\nu\mu} - \mathring{\nabla}_{\mu}Q^{\mu\nu}{}_{\nu} \,. \end{split}$$

• Curvature of a general connection:

$$\mathcal{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho}\Gamma^{\tau}{}_{\nu\sigma} - \Gamma^{\mu}{}_{\tau\sigma}\Gamma^{\tau}{}_{\nu\rho}.$$

• Decomposition of the curvature:

$$egin{aligned} \mathcal{R}^{\mu}{}_{
u
ho\sigma} &= \overset{\circ}{\mathcal{R}}^{\mu}{}_{
u
ho\sigma} + \overset{\circ}{
abla}_{
ho}(\mathcal{K}^{\mu}{}_{
u\sigma} + \mathcal{L}^{\mu}{}_{
u\sigma}) - \overset{\circ}{
abla}_{\sigma}(\mathcal{K}^{\mu}{}_{
u
ho} + \mathcal{L}^{\mu}{}_{
u
ho}) &+ (\mathcal{K}^{\mu}{}_{\omega
ho} + \mathcal{L}^{\mu}{}_{\omega
ho})(\mathcal{K}^{\omega}{}_{
u\sigma} + \mathcal{L}^{\omega}{}_{
u\sigma}) - (\mathcal{K}^{\mu}{}_{\omega\sigma} + \mathcal{L}^{\mu}{}_{\omega\sigma})(\mathcal{K}^{\omega}{}_{
u
ho} + \mathcal{L}^{\omega}{}_{
u
ho})\,. \end{aligned}$$

- Two special cases:
 - 1. Metric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $L^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= \mathcal{K}^{\mu}{}_{\omega\sigma}\mathcal{K}^{\omega}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\omega\rho}\mathcal{K}^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}\mathcal{K}^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}\mathcal{K}^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= -\mathbb{T} + 2\mathring{\nabla}_{\mu}\mathcal{T}_{\nu}{}^{\nu\mu} \,. \end{split}$$

2. Symmetric teleparallel geometry; $R^{\mu}{}_{\nu\rho\sigma} = 0$, $K^{\mu}{}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= L^{\mu}{}_{\omega\sigma}L^{\omega}{}_{\nu\rho} - L^{\mu}{}_{\omega\rho}L^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}L^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}L^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= -\mathbb{Q} + \mathring{\nabla}_{\mu}Q_{\nu}{}^{\nu\mu} - \mathring{\nabla}_{\mu}Q^{\mu\nu}{}_{\nu} \,. \end{split}$$

• Curvature of a general connection:

$$\mathcal{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho} \Gamma^{\mu}{}_{\nu\sigma} - \partial_{\sigma} \Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho} \Gamma^{\tau}{}_{\nu\sigma} - \Gamma^{\mu}{}_{\tau\sigma} \Gamma^{\tau}{}_{\nu\rho} \,.$$

• Decomposition of the curvature:

$$egin{aligned} \mathcal{R}^{\mu}{}_{
u
ho\sigma} &= \overset{\circ}{\mathcal{R}}^{\mu}{}_{
u
ho\sigma} + \overset{\circ}{
abla}_{
ho}(\mathcal{K}^{\mu}{}_{
u\sigma} + \mathcal{L}^{\mu}{}_{
u\sigma}) - \overset{\circ}{
abla}_{\sigma}(\mathcal{K}^{\mu}{}_{
u
ho} + \mathcal{L}^{\mu}{}_{
u
ho}) &+ (\mathcal{K}^{\mu}{}_{\omega
ho} + \mathcal{L}^{\mu}{}_{\omega
ho})(\mathcal{K}^{\omega}{}_{
u\sigma} + \mathcal{L}^{\omega}{}_{
u\sigma}) - (\mathcal{K}^{\mu}{}_{\omega\sigma} + \mathcal{L}^{\mu}{}_{\omega\sigma})(\mathcal{K}^{\omega}{}_{
u
ho} + \mathcal{L}^{\omega}{}_{
u
ho})\,. \end{aligned}$$

- Two special cases:
 - 1. Metric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $L^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= \mathcal{K}^{\mu}{}_{\omega\sigma}\mathcal{K}^{\omega}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\omega\rho}\mathcal{K}^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}\mathcal{K}^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}\mathcal{K}^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= -\mathbb{T} + 2\mathring{\nabla}_{\mu}\mathcal{T}_{\nu}{}^{\nu\mu} \,. \end{split}$$

2. Symmetric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $K^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= L^{\mu}{}_{\omega\sigma}L^{\omega}{}_{\nu\rho} - L^{\mu}{}_{\omega\rho}L^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}L^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}L^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= -\mathbb{Q} + \mathring{\nabla}_{\mu}Q^{\nu\mu} - \mathring{\nabla}_{\mu}Q^{\mu\nu}{}_{\nu} \,. \end{split}$$

• Curvature of a general connection:

$$\mathcal{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho} \Gamma^{\mu}{}_{\nu\sigma} - \partial_{\sigma} \Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho} \Gamma^{\tau}{}_{\nu\sigma} - \Gamma^{\mu}{}_{\tau\sigma} \Gamma^{\tau}{}_{\nu\rho} \,.$$

• Decomposition of the curvature:

$$egin{aligned} \mathcal{R}^{\mu}{}_{
u
ho\sigma} &= \overset{\circ}{\mathcal{R}}^{\mu}{}_{
u
ho\sigma} + \overset{\circ}{
abla}_{
ho}(\mathcal{K}^{\mu}{}_{
u\sigma} + \mathcal{L}^{\mu}{}_{
u\sigma}) - \overset{\circ}{
abla}_{\sigma}(\mathcal{K}^{\mu}{}_{
u
ho} + \mathcal{L}^{\mu}{}_{
u
ho}) &+ (\mathcal{K}^{\mu}{}_{\omega
ho} + \mathcal{L}^{\mu}{}_{\omega
ho})(\mathcal{K}^{\omega}{}_{
u\sigma} + \mathcal{L}^{\omega}{}_{
u\sigma}) - (\mathcal{K}^{\mu}{}_{\omega\sigma} + \mathcal{L}^{\mu}{}_{\omega\sigma})(\mathcal{K}^{\omega}{}_{
u
ho} + \mathcal{L}^{\omega}{}_{
u
ho})\,. \end{aligned}$$

- Two special cases:
 - 1. Metric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $L^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= K^{\mu}{}_{\omega\sigma}K^{\omega}{}_{\nu\rho} - K^{\mu}{}_{\omega\rho}K^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}K^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}K^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= -\mathbb{T} + \mathring{\nabla}_{\mu}B^{\mu}_{T} \,. \end{split}$$

2. Symmetric teleparallel geometry; $R^{\mu}_{\nu\rho\sigma} = 0$, $K^{\mu}_{\nu\rho} = 0$:

$$\begin{split} \mathring{R}^{\mu}{}_{\nu\rho\sigma} &= L^{\mu}{}_{\omega\sigma}L^{\omega}{}_{\nu\rho} - L^{\mu}{}_{\omega\rho}L^{\omega}{}_{\nu\sigma} + \mathring{\nabla}_{\sigma}L^{\mu}{}_{\nu\rho} - \mathring{\nabla}_{\rho}L^{\mu}{}_{\nu\sigma} \,, \\ \mathring{R} &= -\mathbb{Q} + \mathring{\nabla}_{\mu}B^{\mu}_{Q} \,. \end{split}$$

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\mathsf{EH}} = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} \mathring{R}$$

Teleparallel gravity

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\mathsf{EH}} = rac{1}{16\pi G} \int_M \mathsf{d}^4 x \sqrt{-\det g} (-\mathbb{T} + \overset{\circ}{
abla}_\mu B^\mu_T) \,.$$

 \circ Make use of identity $\mathring{R} = -\mathbb{T} + \mathring{\nabla}_{\mu} B^{\mu}_{T}.$

Teleparallel gravity

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\mathsf{EH}} = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} (-\mathbb{T} + \overset{\circ}{
abla}_\mu B^\mu_T) \,.$$

- Make use of identity $\mathring{R} = -\mathbb{T} + \mathring{\nabla}_{\mu} B^{\mu}_{T}$.
- Boundary term $\check{\nabla}_{\mu} B^{\mu}_{T}$ does not contribute to field equations.

Teleparallel gravity

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\mathsf{TEGR}} = -rac{1}{16\pi G}\int_M \mathrm{d}^4 x \sqrt{-\det g}\mathbb{T}\,.$$

- Make use of identity $\mathring{R} = -\mathbb{T} + \mathring{\nabla}_{\mu} B^{\mu}_{T}$.
- Boundary term $\check{\nabla}_{\mu}B^{\mu}_{T}$ does not contribute to field equations.
- \Rightarrow Omit boundary term to obtain action of the teleparallel equivalent of GR.

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\text{TEGR}} = -rac{1}{16\pi G}\int_M \mathrm{d}^4 x \sqrt{-\det g} \mathbb{T}\,.$$

- Make use of identity $\mathring{R} = -\mathbb{T} + \mathring{\nabla}_{\mu} B^{\mu}_{T}$.
- Boundary term $\check{\nabla}_{\mu} B^{\mu}_{T}$ does not contribute to field equations.
- \Rightarrow Omit boundary term to obtain action of the teleparallel equivalent of GR.
- The symmetric teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\mathrm{EH}} = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} \overset{\,\,\mathrm{\circ}}{R} \,.$$

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\text{TEGR}} = -rac{1}{16\pi G}\int_M \mathrm{d}^4 x \sqrt{-\det g} \mathbb{T}\,.$$

- Make use of identity $\mathring{R} = -\mathbb{T} + \mathring{\nabla}_{\mu} B^{\mu}_{T}$.
- Boundary term $\check{\nabla}_{\mu} B^{\mu}_{T}$ does not contribute to field equations.
- \Rightarrow Omit boundary term to obtain action of the teleparallel equivalent of GR.
- The symmetric teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$\mathcal{S}_{\mathsf{EH}} = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} (-\mathbb{Q} + \overset{\circ}{
abla}_\mu B^\mu_Q) \,.$$

 \circ Make use of identity $\mathring{R} = -\mathbb{Q} + \mathring{
abla}_{\mu} B^{\mu}_{Q}.$

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\text{TEGR}} = -rac{1}{16\pi G}\int_M \mathrm{d}^4 x \sqrt{-\det g} \mathbb{T}\,.$$

- \circ Make use of identity $\mathring{R} = -\mathbb{T} + \mathring{
 abla}_{\mu} B^{\mu}_{T}.$
- Boundary term $\check{\nabla}_{\mu} B^{\mu}_{T}$ does not contribute to field equations.
- \Rightarrow Omit boundary term to obtain action of the teleparallel equivalent of GR.
- The symmetric teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$\mathcal{S}_{\mathsf{EH}} = rac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-\det g} (-\mathbb{Q} + \overset{\circ}{
abla}_\mu B^\mu_Q) \,.$$

- $\circ~$ Make use of identity $\mathring{R} = -\mathbb{Q} + \mathring{
 abla}_{\mu} B^{\mu}_{Q}.$
- Boundary term $\overset{\circ}{\nabla}_{\mu} B^{\mu}_{Q}$ does not contribute to field equations.

- The teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

$$S_{\text{TEGR}} = -rac{1}{16\pi G}\int_M \mathrm{d}^4 x \sqrt{-\det g} \mathbb{T}\,.$$

- \circ Make use of identity $\mathring{R} = -\mathbb{T} + \mathring{
 abla}_{\mu} B^{\mu}_{T}.$
- $\circ~$ Boundary term $\check{\nabla}_{\mu} \textit{B}_{\textit{T}}^{\mu}$ does not contribute to field equations.
- \Rightarrow Omit boundary term to obtain action of the teleparallel equivalent of GR.
- The symmetric teleparallel equivalent of general relativity:
 - Recall Einstein-Hilbert action of general relativity:

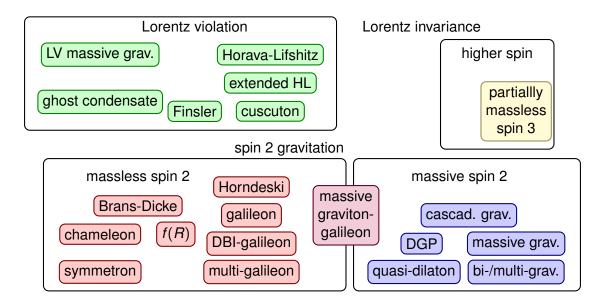
$$S_{ ext{STEGR}} = -rac{1}{16\pi G}\int_M ext{d}^4 x \sqrt{-\det g} \mathbb{Q} \,.$$

- \circ Make use of identity $\mathring{R} = -\mathbb{Q} + \mathring{
 abla}_{\mu} B^{\mu}_{Q}.$
- Boundary term $\check{\nabla}_{\mu}B^{\mu}_{O}$ does not contribute to field equations.
- \Rightarrow Omit boundary term to obtain action of the symmetric teleparallel equivalent of GR.

Introduction

- 2 Building blocks of differential geometry
- 3 A Nobel Prize for geometry
- 4 Three pathways to general relativity
- 6 Going beyond general relativity

Conclusion



The $f(\ldots)$ family of gravity theories

- Action with higher order (curvature, torsion, nonmetricity) terms:
 - Possible effects from quantum gravity, Feynman diagrams with loops.
 - New dynamical effects in cosmology modeling inflation and dark energy.
 - Modification of the strong gravity regime capable of avoiding singularities.

The $f(\ldots)$ family of gravity theories

- Action with higher order (curvature, torsion, nonmetricity) terms:
 - Possible effects from quantum gravity, Feynman diagrams with loops.
 - New dynamical effects in cosmology modeling inflation and dark energy.
 - $\circ~$ Modification of the strong gravity regime capable of avoiding singularities.
- \rightsquigarrow Replace Lagrangian $\mathcal{L} \sim \mathring{R}, \mathbb{T}, \mathbb{Q}$ by $f(\mathring{R}), f(\mathbb{T}), f(\mathbb{Q})$.

The $f(\ldots)$ family of gravity theories

- Action with higher order (curvature, torsion, nonmetricity) terms:
 - Possible effects from quantum gravity, Feynman diagrams with loops.
 - New dynamical effects in cosmology modeling inflation and dark energy.
 - $\circ~$ Modification of the strong gravity regime capable of avoiding singularities.
- \rightsquigarrow Replace Lagrangian $\mathcal{L} \sim \mathring{R}, \mathbb{T}, \mathbb{Q}$ by $f(\mathring{R}), f(\mathbb{T}), f(\mathbb{Q})$.
 - Relation between different extensions?
 - Original Lagrangians differ only by boundary terms:

$$-\mathbb{T}+\overset{\circ}{
abla}_{\mu}B^{\mu}_{T}=\overset{\circ}{R}=-\mathbb{Q}+\overset{\circ}{
abla}_{\mu}B^{\mu}_{Q}$$
 .

 \Rightarrow Corresponding equivalent theories:

$$f(-\mathbb{T}+\overset{\circ}{
abla}_{\mu}B^{\mu}_{T})=f(\overset{\circ}{R})=f(-\mathbb{Q}+\overset{\circ}{
abla}_{\mu}B^{\mu}_{Q}).$$

- $f(\mathbb{T})$ and $f(\mathbb{Q})$ Lagrangians lead to essentially different theories.
- $\circ~$ Difference cannot be moved into boundary term \Rightarrow different field equations.

Coupling scalar fields

- Why consider scalar fields Φ non-minimally coupled to gravity?
 - Scalar fields are simplest possibility to add another degree of freedom.
 - $\circ~$ Discovery of the Higgs boson showed existence of fundamental scalar fields.
 - Scalar fields appear in effective description of other (e.g., string, quantum) theories.
 - f(...) theories can be expressed as scalar-tensor gravity theories.
 - $\circ~$ Conformal transformations of spacetime may be modeled using scalar fields.
 - Screening effects may suppress scalar field interaction at solar system scales.

Coupling scalar fields

- Why consider scalar fields Φ non-minimally coupled to gravity?
 - Scalar fields are simplest possibility to add another degree of freedom.
 - $\circ~$ Discovery of the Higgs boson showed existence of fundamental scalar fields.
 - Scalar fields appear in effective description of other (e.g., string, quantum) theories.
 - f(...) theories can be expressed as scalar-tensor gravity theories.
 - $\circ~$ Conformal transformations of spacetime may be modeled using scalar fields.
 - Screening effects may suppress scalar field interaction at solar system scales.
- Scalar field extensions of different formulations of GR:
 - Scalar-curvature gravity:

$$S_{\text{SCG}} = rac{1}{16\pi G} \int_M d^4 x \sqrt{-\det g} \left[\mathcal{A}(\Phi) \mathring{R} - \mathcal{B}(\Phi) g^{\mu\nu} \partial_\mu \Phi \partial_
u \Phi - \mathcal{V}(\Phi)
ight] \, .$$

Scalar-torsion gravity:

$$S_{\text{STG}} = \frac{1}{16\pi G} \int_{M} d^{4}x \sqrt{-\det g} \left[-\mathcal{A}(\Phi)\mathbb{T} - \left(\mathcal{B}(\Phi) \overset{\circ}{\nabla}^{\mu} \Phi - 2\mathcal{C}(\Phi) T_{\nu}{}^{\nu\mu} \right) \overset{\circ}{\nabla}_{\mu} \Phi - \mathcal{V}(\Phi) \right]$$

• Scalar-nonmetricity gravity:

$$S_{\text{SNG}} = \frac{1}{16\pi G} \int_{M} d^{4}x \sqrt{-\det g} \left[-\mathcal{A}(\Phi)\mathbb{Q} - \left(\mathcal{B}(\Phi)\mathring{\nabla}^{\mu}\Phi - 2\mathcal{C}(\Phi)Q_{\nu}{}^{\nu\mu} - 2\mathcal{D}(\Phi)Q^{\mu\nu}{}_{\nu} \right) \mathring{\nabla}_{\mu}\Phi - \mathcal{V}(\Phi) \right]$$

New GR, newer GR and even newer theories

- More general theories constructible from torsion terms:
 - "New general relativity":

$$\mathcal{L} = c_1 T^{\mu\nu\rho} T_{\mu\nu\rho} + c_2 T^{\mu\nu\rho} T_{\rho\nu\mu} + c_3 T^{\mu}{}_{\mu\rho} T_{\nu}{}^{\nu\rho}$$

• Generalized new general relativity:

$$\mathcal{L} = f(T^{\mu\nu\rho}T_{\mu\nu\rho}, T^{\mu\nu\rho}T_{\rho\nu\mu}, T^{\mu}{}_{\mu\rho}T_{\nu}{}^{\nu\rho}).$$

• Additional coupling of scalar fields, free function of first order derivative terms...

New GR, newer GR and even newer theories

- More general theories constructible from torsion terms:
 - "New general relativity":

$$\mathcal{L} = c_1 T^{\mu\nu\rho} T_{\mu\nu\rho} + c_2 T^{\mu\nu\rho} T_{\rho\nu\mu} + c_3 T^{\mu}{}_{\mu\rho} T_{\nu}{}^{\nu\rho}$$

• Generalized new general relativity:

$$\mathcal{L} = f(T^{\mu\nu\rho}T_{\mu\nu\rho}, T^{\mu\nu\rho}T_{\rho\nu\mu}, T^{\mu}{}_{\mu\rho}T_{\nu}{}^{\nu\rho}).$$

- · Additional coupling of scalar fields, free function of first order derivative terms...
- More general theories constructible from nonmetricity terms:
 - "Newer general relativity":

$$\mathcal{L} = b_1 Q^{\mu\nu\rho} Q_{\mu\nu\rho} + b_2 Q^{\mu\nu\rho} Q_{\rho\nu\mu} + b_3 Q^{\mu}{}_{\mu\rho} Q_{\nu}{}^{\nu\rho} + b_4 Q^{\mu}{}_{\mu\rho} Q^{\rho\nu}{}_{\nu} + b_5 Q_{\rho\mu}{}^{\mu} Q^{\rho\nu}{}_{\nu} \,.$$

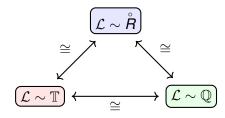
• Generalized new general relativity:

$$\mathcal{L} = f(Q^{\mu\nu\rho}Q_{\mu\nu\rho}, Q^{\mu\nu\rho}Q_{\rho\nu\mu}, Q^{\mu}{}_{\mu\rho}Q_{\nu}{}^{\nu\rho}, Q^{\mu}{}_{\mu\rho}Q^{\rho\nu}{}_{\nu}, Q_{\rho\mu}{}^{\mu}Q^{\rho\nu}{}_{\nu}).$$

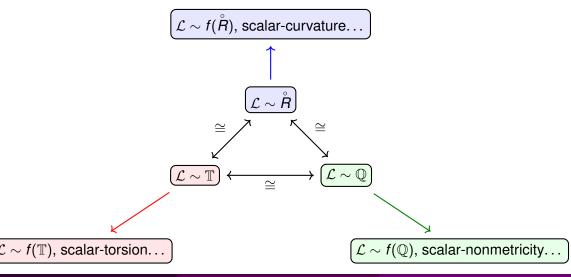
Additional coupling of scalar fields, free function of first order derivative terms...

• Different geometric formulations of general relativity...

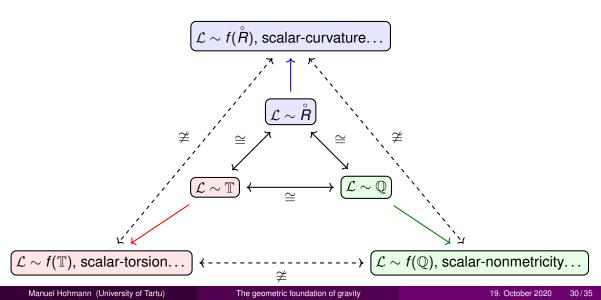
• Different geometric formulations of general relativity are equivalent.



- Different geometric formulations of general relativity are equivalent,
- but extensions based on these geometries...



- Different geometric formulations of general relativity are equivalent,
- but extensions based on these geometries are not.



$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu
u}(\gamma(t))\dot{\gamma}^\mu(t)\dot{\gamma}^
u(t)|} \,\mathrm{d}t\,.$$

$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu
u}(\gamma(t))\dot{\gamma}^\mu(t)\dot{\gamma}^
u(t)|} \,\mathrm{d}t\,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.

$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu\nu}(\gamma(t))\dot{\gamma}^{\mu}(t)\dot{\gamma}^{\nu}(t)|} \,\mathrm{d}t = \int_{t_1}^{t_2} F(\gamma(t),\dot{\gamma}(t)) \,\mathrm{d}t \,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.
- \rightsquigarrow Consider more general length function F(x, y) on the tangent bundle TM.

$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu\nu}(\gamma(t))\dot{\gamma}^{\mu}(t)\dot{\gamma}^{\nu}(t)|} \,\mathrm{d}t = \int_{t_1}^{t_2} F(\gamma(t),\dot{\gamma}(t)) \,\mathrm{d}t \,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.
- \rightarrow Consider more general length function F(x, y) on the tangent bundle *TM*.
- \Rightarrow Gravity described by geometric objects and action on the tangent bundle.

$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu\nu}(\gamma(t))\dot{\gamma}^{\mu}(t)\dot{\gamma}^{\nu}(t)|} \,\mathrm{d}t = \int_{t_1}^{t_2} F(\gamma(t),\dot{\gamma}(t)) \,\mathrm{d}t \,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.
- \rightarrow Consider more general length function F(x, y) on the tangent bundle TM.
- \Rightarrow Gravity described by geometric objects and action on the tangent bundle.
- Source term in the gravitational field equations on *TM* replacing $\Theta_{\mu\nu}$?

$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu\nu}(\gamma(t))\dot{\gamma}^{\mu}(t)\dot{\gamma}^{\nu}(t)|} \,\mathrm{d}t = \int_{t_1}^{t_2} F(\gamma(t),\dot{\gamma}(t)) \,\mathrm{d}t \,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.
- \rightsquigarrow Consider more general length function F(x, y) on the tangent bundle *TM*.
- \Rightarrow Gravity described by geometric objects and action on the tangent bundle.
- Source term in the gravitational field equations on *TM* replacing $\Theta_{\mu\nu}$?
 - Kinetic theory of gases: gas constituted by particles following geodesic trajectories.

$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu\nu}(\gamma(t))\dot{\gamma}^{\mu}(t)\dot{\gamma}^{\nu}(t)|} \,\mathrm{d}t = \int_{t_1}^{t_2} F(\gamma(t),\dot{\gamma}(t)) \,\mathrm{d}t \,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.
- \rightsquigarrow Consider more general length function F(x, y) on the tangent bundle TM.
- \Rightarrow Gravity described by geometric objects and action on the tangent bundle.
- Source term in the gravitational field equations on *TM* replacing $\Theta_{\mu\nu}$?
 - Kinetic theory of gases: gas constituted by particles following geodesic trajectories.
 - Continuum limit: gas modeled by density on particle phase space (positions, velocities).

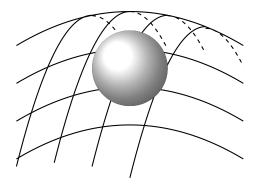
$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu\nu}(\gamma(t))\dot{\gamma}^{\mu}(t)\dot{\gamma}^{\nu}(t)|} \,\mathrm{d}t = \int_{t_1}^{t_2} F(\gamma(t),\dot{\gamma}(t)) \,\mathrm{d}t \,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.
- \rightsquigarrow Consider more general length function F(x, y) on the tangent bundle TM.
- \Rightarrow Gravity described by geometric objects and action on the tangent bundle.
- Source term in the gravitational field equations on *TM* replacing $\Theta_{\mu\nu}$?
 - Kinetic theory of gases: gas constituted by particles following geodesic trajectories.
 - Continuum limit: gas modeled by density on particle phase space (positions, velocities).
 - One-particle distribution function on *TM* becomes natural candidate for source term.

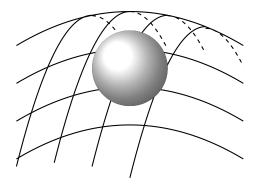
$$\ell = \int_{t_1}^{t_2} \sqrt{|g_{\mu\nu}(\gamma(t))\dot{\gamma}^{\mu}(t)\dot{\gamma}^{\nu}(t)|} \,\mathrm{d}t = \int_{t_1}^{t_2} F(\gamma(t),\dot{\gamma}(t)) \,\mathrm{d}t \,.$$

- Length functional fully determines several physical quantities:
 - Causality of a curve: sign of the term under the integral.
 - Proper time (shown by a co-moving clock) along a trajectory.
 - Free-fall trajectories given by extremal curves of length functional.
- \rightarrow Consider more general length function F(x, y) on the tangent bundle *TM*.
- \Rightarrow Gravity described by geometric objects and action on the tangent bundle.
- Source term in the gravitational field equations on *TM* replacing $\Theta_{\mu\nu}$?
 - Kinetic theory of gases: gas constituted by particles following geodesic trajectories.
 - Continuum limit: gas modeled by density on particle phase space (positions, velocities).
 - $\circ~$ One-particle distribution function on TM becomes natural candidate for source term.
 - Possible to address unsolved questions in gravity and cosmology from new geometry?

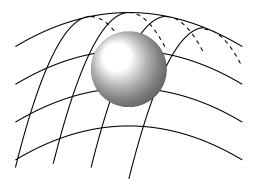
• Cartan geometry: how a hamster sitting in a ball describes geometry.



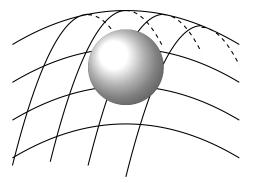
- Cartan geometry: how a hamster sitting in a ball describes geometry.
- Possible ways the hamster can move in the ball: Lie group G.



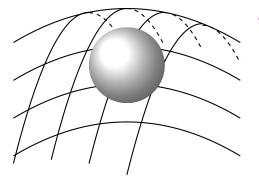
- Cartan geometry: how a hamster sitting in a ball describes geometry.
- Possible ways the hamster can move in the ball: Lie group G.
- Motions of the hamster not moving the ball: subgroup $H \subset G$.



- Cartan geometry: how a hamster sitting in a ball describes geometry.
- Possible ways the hamster can move in the ball: Lie group G.
- Motions of the hamster not moving the ball: subgroup $H \subset G$.
- Cartan connection A measures, how motions of hamster move the ball.



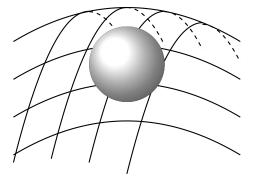
- Cartan geometry: how a hamster sitting in a ball describes geometry.
- Possible ways the hamster can move in the ball: Lie group G.
- Motions of the hamster not moving the ball: subgroup $H \subset G$.
- Cartan connection A measures, how motions of hamster move the ball.



• Deviation of surface from ball geometry:

$$F=dA+\frac{1}{2}[A,A]$$

- Cartan geometry: how a hamster sitting in a ball describes geometry.
- Possible ways the hamster can move in the ball: Lie group G.
- Motions of the hamster not moving the ball: subgroup $H \subset G$.
- Cartan connection A measures, how motions of hamster move the ball.



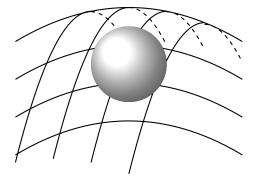
• Deviation of surface from ball geometry:

$$F=dA+rac{1}{2}[A,A]$$
 .

Action functional in Cartan geometry:

$$S = \int_M \kappa(F_\mathfrak{h} \wedge \star F_\mathfrak{h}) \,.$$

- Cartan geometry: how a hamster sitting in a ball describes geometry.
- Possible ways the hamster can move in the ball: Lie group G.
- Motions of the hamster not moving the ball: subgroup $H \subset G$.
- Cartan connection A measures, how motions of hamster move the ball.



• Deviation of surface from ball geometry:

$$F=dA+rac{1}{2}[A,A]$$
 .

Action functional in Cartan geometry:

$$\mathcal{S} = \int_M \kappa(\mathcal{F}_\mathfrak{h} \wedge \star \mathcal{F}_\mathfrak{h}) \,.$$

Unified model of previous geometries.

Introduction

- 2 Building blocks of differential geometry
- 3 A Nobel Prize for geometry
- 4 Three pathways to general relativity
- 5 Going beyond general relativity

- Gravity is one of the most interesting fields to study:
 - $\circ~$ Most observations and dynamical processes in the universe dominated by gravity.
 - Current and future technologies make direct use of gravity.
 - Running and upcoming high precision experiments to study gravitational interaction.
 - $\circ~$ Several open questions from both observations and theoretical aspects.

- Gravity is one of the most interesting fields to study:
 - $\circ~$ Most observations and dynamical processes in the universe dominated by gravity.
 - Current and future technologies make direct use of gravity.
 - Running and upcoming high precision experiments to study gravitational interaction.
 - $\circ~$ Several open questions from both observations and theoretical aspects.
- Gravitational interaction can be described by geometry:
 - Differential geometry provides all notions to model physical quantities.
 - Gravitational dynamics described by action for geometric objects (metric, connection).

- Gravity is one of the most interesting fields to study:
 - $\circ~$ Most observations and dynamical processes in the universe dominated by gravity.
 - Current and future technologies make direct use of gravity.
 - Running and upcoming high precision experiments to study gravitational interaction.
 - $\circ~$ Several open questions from both observations and theoretical aspects.
- Gravitational interaction can be described by geometry:
 - Differential geometry provides all notions to model physical quantities.
 - Gravitational dynamics described by action for geometric objects (metric, connection).
- General relativity:
 - Original formulation models gravity as curvature of Levi-Civita connection.
 - Equivalent formulations using torsion and nonmetricity of flat connection exist.

- Gravity is one of the most interesting fields to study:
 - $\circ~$ Most observations and dynamical processes in the universe dominated by gravity.
 - Current and future technologies make direct use of gravity.
 - Running and upcoming high precision experiments to study gravitational interaction.
 - $\circ~$ Several open questions from both observations and theoretical aspects.
- Gravitational interaction can be described by geometry:
 - Differential geometry provides all notions to model physical quantities.
 - Gravitational dynamics described by action for geometric objects (metric, connection).
- General relativity:
 - Original formulation models gravity as curvature of Levi-Civita connection.
 - Equivalent formulations using torsion and nonmetricity of flat connection exist.
- Modified gravity beyond general relativity:
 - Numerous models exist to address open questions in cosmology and quantum gravity.
 - Various possible ways to extend general relativity using curvature, torsion, nonmetricity.
 - Extensions based on different geometric formulations are not equivalent.
 - Beyond Riemannian metric geometry: Finsler geometry models observers and gases.
 - Unified description of all approaches using Cartan geometry.

- Gravity is one of the most interesting fields to study:
 - $\circ~$ Most observations and dynamical processes in the universe dominated by gravity.
 - Current and future technologies make direct use of gravity.
 - Running and upcoming high precision experiments to study gravitational interaction.
 - $\circ~$ Several open questions from both observations and theoretical aspects.
- Gravitational interaction can be described by geometry:
 - Differential geometry provides all notions to model physical quantities.
 - Gravitational dynamics described by action for geometric objects (metric, connection).
- General relativity:
 - Original formulation models gravity as curvature of Levi-Civita connection.
 - $\circ~$ Equivalent formulations using torsion and nonmetricity of flat connection exist.
- Modified gravity beyond general relativity:
 - Numerous models exist to address open questions in cosmology and quantum gravity.
 - $\circ~$ Various possible ways to extend general relativity using curvature, torsion, nonmetricity.
 - Extensions based on different geometric formulations are not equivalent.
 - Beyond Riemannian metric geometry: Finsler geometry models observers and gases.
 - Unified description of all approaches using Cartan geometry.

• Nobel Prize in Physics 2020 for using geometry to prove fundamental physics.

The road ahead: from the cosmos to quantum gravity

- New geometries provide new insights into well-known problems:
 - How to describe the singularities at the Big Bang and black holes?
 - o How to solve the information paradoxes related to black hole horizons?
 - What drives the accelerating expansion of the universe at early and late times?
 - What is the common theory describing all interactions (gravity and particle physics)?
 - How can one construct a consistent theory of quantum gravity?

The road ahead: from the cosmos to quantum gravity

- New geometries provide new insights into well-known problems:
 - How to describe the singularities at the Big Bang and black holes?
 - o How to solve the information paradoxes related to black hole horizons?
 - o What drives the accelerating expansion of the universe at early and late times?
 - What is the common theory describing all interactions (gravity and particle physics)?
 - How can one construct a consistent theory of quantum gravity?
- What are the advantages of modeling gravity with new geometries?
 - Gravity as a gauge theory: new similarities with particle physics:
 - $\cdot\,$ Electromagnetism, weak and strong nuclear force modeled by gauge theories.
 - · A common description of all forces requires a similar description of gravity.
 - A first order action does not require a boundary term (Gibbons-Hawking-York):
 - · A boundary term does not enter the field equations, but affects horizons and Casimir effect.
 - $\cdot\,$ Alternative description of black hole entropy and thermodynamics.
 - A common description using Cartan geometry may pave the path to quantization:
 - · Loop Quantum Gravity: canonical quantization of gravity based on Ashtekar variables.
 - $\cdot\,$ Ashtekar variables may be defined naturally in Cartan geometry.

The road ahead: from the cosmos to quantum gravity

- New geometries provide new insights into well-known problems:
 - How to describe the singularities at the Big Bang and black holes?
 - $\circ~$ How to solve the information paradoxes related to black hole horizons?
 - o What drives the accelerating expansion of the universe at early and late times?
 - What is the common theory describing all interactions (gravity and particle physics)?
 - How can one construct a consistent theory of quantum gravity?
- What are the advantages of modeling gravity with new geometries?
 - Gravity as a gauge theory: new similarities with particle physics:
 - $\cdot\,$ Electromagnetism, weak and strong nuclear force modeled by gauge theories.
 - · A common description of all forces requires a similar description of gravity.
 - A first order action does not require a boundary term (Gibbons-Hawking-York):
 - · A boundary term does not enter the field equations, but affects horizons and Casimir effect.
 - $\cdot\,$ Alternative description of black hole entropy and thermodynamics.
 - $\circ~$ A common description using Cartan geometry may pave the path to quantization:
 - · Loop Quantum Gravity: canonical quantization of gravity based on Ashtekar variables.
 - $\cdot\,$ Ashtekar variables may be defined naturally in Cartan geometry.

\Rightarrow Understanding gravity as geometry is a crucial part of today's physics.