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Einstein gravity

Gravity is described by metric tensor gab.
Einstein-Hilbert action:

SG =
1
2

∫
ωR .

Volume form ω.
Scalar curvature R.

Minimally coupled matter action:

SM =

∫
ωLM .

Einstein equations:

Rab −
1
2

Rgab = Tab .
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Application to the universe

4.6% visible matter.
[Komatsu et al. ’09]

22.8% dark matter.
Galaxy rotation curves.
[de Blok, Bosma ’02]

Anomalous light deflection.
[Wambsganss ’98]

72.6% dark energy.
Accelerating expansion.
[Riess et al. ’98; Perlmutter et al. ’98]

⇒ Problem: What are dark matter and dark energy?
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Explanations for the dark universe

Particle physics:
Dark matter: [Bertone, Hooper, Silk ’05]

Weakly interacting massive particles (WIMPs). [Ellis et al. ’84]

Axions. [Preskill, Wise, Wilczek ’83]

Massive compact halo objects (MACHOs). [Paczynski ’86]

Dark energy: [Copeland, Sami, Tsujikawa ’06]

Quintessence. [Peebles, Ratra ’88]

K-essense. [Chiba, Okabe, Yamaguchi ’00; Armendariz-Picon, Mukhanov, Steinhardt ’01]

Chaplygin gas. [Kamenshchik, Moschella, Pasquier ’01]

Gravity:
Modified Newtonian dynamics (MOND). [Milgrom ’83]

Tensor-vector-scalar theories. [Bekenstein ’04]

Curvature corrections. [Schuller, Wohlfarth ’05; Sotiriou, Faraoni ’05]

Dvali-Gabadadze-Porrati (DGP) model. [Dvali, Gabadadze, Porrati ’00, Lue ’06]

Non-symmetric gravity. [Moffat ’95]

Area metric gravity. [Punzi, Schuller, Wohlfarth ’07]

New idea: repulsive gravity⇔ negative mass!
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Mass in Newtonian gravity

Three types of mass! [Bondi ’57]

Active gravitational mass ma - source of gravity: φ = −GN
ma
r .

Passive gravitational mass mp - reaction on gravity: ~F = −mp ~∇φ.
Inertial mass mi - relates force to acceleration: ~F = mi~a.

Theory relates the different types of mass:

Momentum conservation: ma ∼ mp.
Weak equivalence principle: mp ∼ mi .

ma ∼ mp ∼ mi experimentally verified.
Gravity is always attractive.
Convention: unit ratios and signs such that ma = mp = mi > 0.
Observations exist for visible mass only.
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Dark universe from negative mass
Idea for dark universe: standard model with ma = mp = −mi < 0.
Both copies couple only through gravity⇒ “dark”.
Preserves momentum conservation.
Breaks weak equivalence principle only for cross-interaction.

Explanation of dark matter.

Explanation of dark energy.
⇒ Advantage: Dark copy Ψ− of

well-known standard model Ψ+:
No new parameters.
No unknown masses.
No unknown couplings.
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Repulsive Einstein gravity

Positive and negative test masses follow different trajectories.
Two types of test mass trajectories⇒ two types of observers.
Observer trajectories are autoparallels of two connections ∇±.
Observers attach parallely transported frames to their curves.
Frames are orthonormalized using two metric tensors g±ab.
More general: N metrics gI

ab and standard model copies ΨI .

9
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Assumptions of the no-go theorem

1. Field content: standard model copies Ψ±, metrics g±ab.
2. Gravitational field equations:

K ab[g+,g−] = Mab[g+,g−,Ψ+,Ψ−] .

3. Geometry: K ab with at most second derivatives of g±.
4. Matter source: Mab = J · T ab with J invertible.

5. Vacuum solution: g±ab = λ±ηab with λ± > 0.
6. Post-Newtonian limit for non-moving dust:

g± = λ±
[
−(1 + 2I±1 ) dt ⊗ dt + (1− 2I±2 )δαβdxα ⊗ dxβ

]
.

with gauge invariant post-Newtonian potentials I2 = γ · I1.

11



No-go theorem

Theorem
We assume a bimetric theory with positive and negative mass sources
and observers satisfying the assumptions detailed above. It is not
possible to achieve a Newtonian limit with antisymmetric mass mixing
in the Poisson equations for the vector I1 of gauge-invariant Newtonian
potentials,

4I1 =
1
2

(
1 −1
−1 1

)
·ρ .

[MH, M. Wohlfarth ’09]
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Proof: Field equations

Linearization ansatz:

g±ab = λ±(ηab + h±ab) .

Most general form of the linearized field equations:

K ab = P · ∂p∂(ahb)p + Q ·�hab + R · ∂a∂bh

+ M · ∂p∂qhpqηab + N ·�hηab = J · T ab .

Parameter matrices P,Q,R,M,N, J determined by full theory.
Coordinate independent proof⇔ gauge-invariant formalism.
[Bardeen ’80; Stewart ’90; Malik, Wands ’09]

Gauge invariants = physical degrees of freedom, e.g., I±1 .

13



Proof: Contradiction

Equation for gauge-invariant Newtonian potential I1:

−2Q · (1 + γ) · 4I1 = J · λ · ρ .

Two possible cases:

1. Q · (1 + γ) is not invertible:

LHS does not span R2, RHS does span R2!
2. Q · (1 + γ) is invertible:

Compare with desired Poisson equation:

1
2

(
1 −1
−1 1

)
·ρ = 4I1 = −1

2
(1 + γ)−1 ·Q−1 · J · λ · ρ .

LHS is not invertible, RHS is invertible!
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Possible ways around the theorem

More general source terms⇔ modified matter action.
⇒ Possible problems with causality!
More general Poisson equation:

4I1 =
1
2

(
1 −α
−α 1

)
· ρ .

⇒ Additional free parameter α!
N > 2 standard model copies and metrics:

4I1 =
1
2


1 −1 · · · −1
−1 1 −1
...

. . .
−1 −1 1

· ρ .
⇒ Multimetric gravity!
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Construction principles

1. Each standard model copy ΨI couples only to its metric gI .

⇒ SM [gI ,ΨI ] =

∫
ωILM [gI ,ΨI ] .

2. Different sectors couple only gravitationally.

⇒ S = SG[g1, . . . ,gN ] +
N∑

I=1

SM [gI ,ΨI ] .

3. Field equations contain at most second derivatives of the metrics.
4. Symmetric with respect to permutations of the sectors (gI ,ΨI).

17



Construction of the theory

Gravitational action:

SG[g1, . . . ,gN ] =
1
2

∫
d4x
√

g0

N∑
I,J=1

(x + yδIJ)gIijRJ
ij .

Variation of the action:

δS = −1
2

N∑
I=1

∫
d4x
√

g0K̃ I abδgI
ab +

1
2

N∑
I=1

∫
d4x

√
gIT I abδgI

ab .

Equations of motion:

T I
ab =

√
g0/gI K̃ I

ab = K I
ab .

18



Geometry tensor

K I
ab =

√
g0/gI

[
− 1

2N
gI

ab

N∑
J,K =1

(x + yδJK )gJijRK
ij

+
N∑

J=1

(x + yδIJ)RJ
ab −

(
2δd

(agI
b)(iδ

c
j) − gI

abδ
c
(iδ

d
j) − gIcdgI

i(agI
b)j

)
×

×
N∑

J=1

(x + yδIJ)
(

2gJpiSIJj
p(cS̃I

d) +
1
2

gJij S̃I
cS̃I

d +
1
2

gJij∇I
cS̃I

d

+∇I
cSIJi

dpgJjp + SIJp
cqSIJi

dpgJjq + SIJi
cqSIJj

dpgJpq
)]
.

Connection difference tensors (first derivative order):

SIJi
jk = ΓIi

jk − ΓJi
jk , SIJ

j = SIJk
jk ,

S̃Ji
jk =

1
N

N∑
I=1

SIJi
jk , S̃J

j = S̃Jk
jk .
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Ricci tensors.

Connection difference tensors (first derivative order):

SIJi
jk = ΓIi

jk − ΓJi
jk , SIJ

j = SIJk
jk ,

S̃Ji
jk =

1
N

N∑
I=1

SIJi
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jk .
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Newtonian limit

Calculate Poisson equation:

4I I
1 =

2
3

(Nx − y)−1
N∑

J=1

( 7Nx + y
4N(Nx + y)

− δIJ
)
ρJ .

Antisymmetric gravitational forces for parameter values

x =
2N − 1

6N(2− N)
, y =

−2N + 7
6(2− N)

.

Three different cases:
N = 1 reduces to Einstein gravity.
N = 2 is excluded.
N ≥ 3 is the desired repulsive gravity theory. [MH, M. Wohlfarth ’10]
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Cosmological symmetry

Standard cosmology: Robertson–Walker metrics

gI = −n2
I (t)dt ⊗ dt + a2

I (t)γαβdxα ⊗ dxβ .

Lapse functions nI .
Scale factors aI .
Spatial metric γαβ of constant curvature k ∈ {−1,0,1} and
Riemann tensor R(γ)αβγδ = 2kγα[γγδ]β .

Perfect fluid matter:

T I ab = (ρI + pI)uIauIb + pIgIab .

Normalization: gI
abuIauIb = −1.

22



Simple cosmological model

Early universe: radiation; late universe: dust.
Copernican principle: common evolution for all matter sectors.

⇒ Single effective energy-momentum tensor T I
ab = Tab.

⇒ Single effective metric gI
ab = gab.

⇒ Common scale factors aI = a and lapse functions nI = n.
⇒ Rescale cosmological time to set n ≡ 1.
⇒ Ricci tensors RI

ab = Rab become equal.
⇒ Connection differences SIJ i

jk = 0 vanish.
⇒ Equations of motion simplify:

(2− N)Tab = Rab −
1
2

Rgab .

⇒ Negative effective gravitational constant for early / late universe.
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Cosmological equations of motion

Insert Robertson–Walker metric into equations of motion:

ρ =
3

2− N

(
ȧ2

a2 +
k
a2

)
,

p = − 1
2− N

(
2

ä
a

+
ȧ2

a2 +
k
a2

)
.

⇒ Positive matter density ρ > 0 requires k = −1 and ȧ2 < 1.
⇒ No solutions for k = 0 or k = 1.

24



Accelerating expansion

Acceleration equation:

ä
a

=
N − 2

6
(ρ+ 3p) .

Factor N − 2 > 0 for multimetric gravity.
Strong energy condition(

Tab −
1
2

Tgab

)
tatb ≥ 0

for all timelike vector fields ta implies ρ+ 3p ≥ 0.
⇒ Acceleration must be positive.

25



Explicit solution

Equation of state: p = ωρ; dust: ω = 0, radiation: ω = 1/3.
General solution using conformal time η defined by dt = a dη:

a = a0

(
cosh

(
3ω + 1

2
(η − η0)

)) 2
3ω+1

,

ρ =
3

(N − 2)a2
0

(
cosh

(
3ω + 1

2
(η − η0)

))− 6ω+6
3ω+1

.

-15 -10 -5 5 10 15

t

a0

5

10

15

a

a0

-4 -2 2 4

t

a0

0.2

0.4

0.6

0.8

1.0

Ρ

Ρ0

⇒ Big bounce at η = η0. [MH, M. Wohlfarth ’10] 26
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Ingredients

1. Metrics gI
ab = g0

ab + hI
ab with

g0 = −dt ⊗ dt + a2(t)γαβdxα ⊗ dxβ

and a(t) determined by cosmology.
2. Scale for structure formation� curvature radius of the universe:

Cubic volume 0 ≤ xα ≤ `.
Approximate γαβ by δαβ .
Periodic boundary conditions.

3. Matter content: n point masses M for each sector.
Model for dust matter: p = 0.
Matter density:

ρ =
Mn

(a`)3 .

4. Large mean distance a`/ 3
√

Nn� 2GM.
5. Small velocities |vαIi | = |aẋαIi | � 1.

28



Local dynamics

Masses of type I follow geodesics of their metric gI
ab:

ẍαIi =
∂αhI

00
2a2 − 2

ȧ
a

ẋαIi .

Antisymmetric Poisson equation:

hI
00 = −2

N∑
J=1

(2δIJ − 1)ΦJ .

Individual Newtonian potentials ΦI(t , ~x):

ΦI(t , ~x) = − M
a(t)

n∑
i=1

1
d(~x , ~xIi(t))

.

Periodic distance function d(~x , ~x ′):

d(~x , ~x ′) = min
~k∈Z3

∣∣∣~x − ~x ′ + `~k
∣∣∣ .
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Evolution of structures for all matter types

N = 4.
n = 16384.
7.5 days
CPU time.
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Final state for one matter type

Galactic
clusters.
Empty voids.
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Physical situation in the solar system

1. Consider only repulsive gravity between different sectors.
⇒ Different matter types should separate.
⇒ Energy-momentum tensor contains only visible matter:

⇒ T +
ab = T 1

ab 6= 0.
⇒ T−ab = T 2

ab = . . . = T N
ab = 0.

2. Permutation symmetry between sectors.

⇒ Visible matter has equal effects on all dark sectors.
⇒ Metric:

⇒ g+
ab = g1

ab.
⇒ g−ab = g2

ab = . . . = gN
ab.
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Parametrized post-Newtonian formalism

Obtain “fingerprint” of single-metric gravity theories. [Thorne, Will ’71; Will ’93]

Expansion of the metric in velocity orders:

gab = g0
ab + hab = g0

ab + h(1)
ab + h(2)

ab + h(3)
ab + h(4)

ab .

Decomposition of hab:
PPN potentials: U,Vα,Wα,ΦW ,Φ1 . . .Φ4,A, /B, /Uαβ .
PPN parameters: /α, γ, /θ, σ±, β, ξ, φ1 . . . φ4, µ, /ν.

Expand equations of motion:
up to quadratic order in hab,
up to fourth velocity order.

Solve equations of motion order by order⇒ PPN parameters.
Linearized field equations already determine γ, σ+.
Values constrained by experiment, e.g., γ = 1± 2.3 · 10−5.
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Parametrized post-Newtonian formalism

Obtain “fingerprint” of multimetric gravity theories. [MH, M. Wohlfarth ’10]

Expansion of the metric in velocity orders:

g±ab = g0
ab + h±ab = g0

ab + h±(1)
ab + h±(2)

ab + h±(3)
ab + h±(4)

ab .

Decomposition of h±ab:
PPN potentials: U,Vα,Wα,ΦW ,Φ1 . . .Φ4,A,B,Uαβ .
PPN parameters: α±, γ±, θ±, σ±

± , β
±, ξ±, φ±1 . . . φ

±
4 , µ

±, ν±.
Expand equations of motion:

up to quadratic order in h±
ab,

up to fourth velocity order.

Solve equations of motion order by order⇒ PPN parameters.
Linearized field equations already determine α±, γ±, θ±, σ±+.
Values constrained by experiment, e.g., γ+ = 1± 2.3 · 10−5.
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PPN parameters

Apply linearized PPN formalism to presented theory:

1 =

α+ = 1 , α− = −1 ,

1 =

γ+ =
1
N
, γ− =

3
2N − 7

+
1
N

+
1
2
,

0 =

θ+ = 0 , θ− =
1

7− 2N
− 3

2
,

− 2 =

σ+
+ = −1− 1

N
, σ−+ = 2− 1

N
.

α+ = −α− = 1 corresponds to repulsive Newtonian limit.
Experimentally measured values are obtained only for N = 1.
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PPN parameters

Apply linearized PPN formalism to presented theory:

1 = α+ = 1 , α− = −1 ,

1 = γ+ =
1
N
, γ− =

3
2N − 7

+
1
N

+
1
2
,

0 = θ+ = 0 , θ− =
1

7− 2N
− 3

2
,

− 2 = σ+
+ = −1− 1

N
, σ−+ = 2− 1

N
.

α+ = −α− = 1 corresponds to repulsive Newtonian limit.
Experimentally measured values are obtained only for N = 1.
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Improved PPN consistent theory

Add correction term to the gravitational action:

S̄G =
1
2

N∑
I=1

∫
d4x
√

g0 gI ij
(

zS̃I
k S̃I k

ij + uS̃I
i S̃I

j

)
.

PPN consistency and repulsive Newtonian limit are achieved for:

x =
1

8− 4N
, y =

4− N
8− 4N

, z = − 4− N
8− 4N

, u = −12− 3N
8− 4N

.

PPN parameters:

α+ = 1 , γ+ = 1 , θ+ = 0 , σ+
+ = −2 ,

α− = −1 , γ− = −1 , θ− = 0 , σ−+ = 2 .

Correction terms do not affect cosmology or structure formation.
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Summary

General relativity describes visible universe.
Fit to observations requires dark matter & dark energy.
Idea here: Dark universe might be explained by repulsive gravity.

⇒ Repulsive gravity requires an extension of general relativity.
⇒ No-go theorem: bimetric repulsive gravity is not possible.
⇒ Multimetric repulsive gravity with N ≥ 3 by explicit construction.
⇒ Cosmology features late-time acceleration and big bounce.
⇒ Structure formation features clusters and voids.
⇒ Repulsive gravity is consistent with PPN bounds.
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Outlook

Remaining PPN parameters should be determined from full
multimetric PPN formalism.
Restrict multimetric gravity theories by additional PPN bounds.
Establish further construction principles, e.g., continuous
symmetry between sectors.
Examine initial-value problem.
Determine further exact solutions (single point mass. . . ).
Advanced simulation of structure formation including
thermodynamics using GADGET-2 (Millenium Simulation).
Search for repulsive gravity sources in the galactic voids through
gravitational lensing.
Application to binaries: gravitational radiation should be emitted in
all sectors, but only one type is visible.
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Examine initial-value problem.
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Cauchy problem for multimetric gravity

Linearized vacuum field equations:

Cpqrs
ab

I
J∂p∂qhJ

rs = 0 .

Rewrite as first order equations:

∂qhI
rs − k I

qrs = 0 ,

Cpqrs
ab

I
J∂pkJ

qrs = 0 .

Equations are of the form:

Apψ
ϕ∂pfϕ + Bψ

ϕfϕ = 0 .

Cauchy problem is well-posed if

P(q) = det
ψϕ

(Apψ
ϕqp)

is hyperbolic for all timelike covectors q.
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Quantum manifolds: Concept

MQ ``
local homeomorphism

   `
 `
 `
 `position expectation

~~||
||

||
||

M aa

local homeomorphism !!!a
!a
!a
!a

S

position expectation~~||
||

||
||

Rn

Classical mechanics: Euclidian space Rn.
Quantum mechanics: Schwartz space S.
General relativity: Differentiable manifold M.
Quantum gravity: Quantum manifold MQ? [MH, M. Wohlfarth ’08]
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Quantum manifolds: Construction

MQ ⊃ U
φ //

Q
��

V

Q̄
��

⊂ S 6=0(Rn)

M ⊃ X χ
//W ⊂ Rn

Chart (U, φ) of MQ.
Position expectation value Q̄.

Open set V = Q̄−1
(W ) for some open set W .

Lift topology of Rn to MQ via Q̄ ◦ φ.
⇒ Non-Hausdorff topology on MQ.

Take Kolmogorov quotient M = Q(MQ).
⇒ Hausdorff topology on M.
⇒ Unique homeomorphism χ such that χ ◦ Q = Q̄ ◦ φ.
⇒ (X , χ) is a chart of M.
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Quantum manifolds: Differential structure

φi(Ui ∩ Uj)
φji //

Q̄

��

φj(Ui ∩ Uj)

Q̄

��

Ui ∩ Uj

φi

ffMMMMMMMMMM

φj
88qqqqqqqqqq

Q
��

Xi ∩ Xj

χixxqqqqqqqqqq χj

&&MMMMMMMMMM

χi(Xi ∩ Xj)
χji //

Ψ

JJ

χj(Xi ∩ Xj)

Two charts (Ui , φi) and (Uj , φj).
Choose non-unique inverse

Ψ : Rn → S 6=0(Rn) , x 7→
(

y 7→ e−(y−x)2
)
.

⇒ Q̄ ◦ φji ◦Ψ = χji ◦ Q̄ ◦Ψ = χji is differentiable!
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Quantum manifolds: Fiber bundle

U
φ //

ω

##G
GG

GG
GG

GG

Q

��

V

τzzvvvvvvvvv

Q̄

��

X × S0
χ×idS0//

p1{{ww
ww

ww
ww

w
W × S0

p1

$$H
HHHHHHHH

X
χ //W

Chart (U, φ) of MQ.
V is trivial S0-bundle over W .
Use χ to construct unique homeomorphism ω.
U is trivial S0-bundle over X .
MQ is S0-bundle over M.
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Quantum manifolds: Interpretation

Quantization of fields:
Classical fields living on the quantum manifold MQ .
Measurement at ξ ∈ M randomly picks value at Q−1(ξ) ∈ MQ .
Probabilities are defined by measure on MQ .

⇒ Quantum measurement.

Quantization of a point particle:

Point particle trajectory in MQ .
Position measurement yields only projected position ξ ∈ M.
Full dynamics in MQ is hidden to classical observer.

⇒ Quantum dynamics.
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