The Dawn of Black Hole Astronomy

What can be inferred from the image of M87*? What are the next tasks and targets?

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

European Union European Regional Development Fund

Physicumi Seminar, 25. 4. 2019

• Ordinary matter:

- Mass scales with volume: $M \sim \rho R^3$.
- \Rightarrow Radius scales as $R \sim \sqrt[3]{M}$.

- Ordinary matter:
 - Mass scales with volume: $M \sim \rho R^3$.
 - \Rightarrow Radius scales as $R \sim \sqrt[3]{M}$.
- Black holes:
 - Schwarzschild metric:

$$ds^2 = -\left(1 - rac{2GM}{r}
ight) dt^2 + \left(1 - rac{2GM}{r}
ight)^{-1} dr^2 + r^2 d\Omega^2 \, .$$

• Schwarzschild radius $R = 2GM \sim M$.

- Ordinary matter:
 - Mass scales with volume: $M \sim \rho R^3$.
 - \Rightarrow Radius scales as $R \sim \sqrt[3]{M}$.
- Black holes:
 - Schwarzschild metric:

$$ds^2 = -\left(1 - rac{2GM}{r}
ight) dt^2 + \left(1 - rac{2GM}{r}
ight)^{-1} dr^2 + r^2 d\Omega^2 \,.$$

- Schwarzschild radius $R = 2GM \sim M$.
- Observations:
 - GW: $M \approx 30 M_{\odot}$, $R \approx 90$ km.

- Ordinary matter:
 - Mass scales with volume: $M \sim \rho R^3$.
 - \Rightarrow Radius scales as $R \sim \sqrt[3]{M}$.
- Black holes:
 - Schwarzschild metric:

$$ds^2 = -\left(1 - rac{2GM}{r}
ight)dt^2 + \left(1 - rac{2GM}{r}
ight)^{-1}dr^2 + r^2 d\Omega^2$$

- Schwarzschild radius $R = 2GM \sim M$.
- Observations:
 - GW: $M \approx 30 M_{\odot}$, $R \approx 90$ km.
 - M87*: $M \approx 6.5 \cdot 10^9 M_{\odot}$, $R \approx 1.8 \cdot 10^{10}$ km.

http://xkcd.com/2135/

- Ordinary matter:
 - Mass scales with volume: $M \sim \rho R^3$.
 - \Rightarrow Radius scales as $R \sim \sqrt[3]{M}$.
- Black holes:
 - Schwarzschild metric:

$$ds^2 = -\left(1 - rac{2GM}{r}
ight)dt^2 + \left(1 - rac{2GM}{r}
ight)^{-1}dr^2 + r^2 d\Omega^2$$

- Schwarzschild radius $R = 2GM \sim M$.
- Observations:
 - GW: $M \approx 30 M_{\odot}$, $R \approx 90$ km.
 - M87*: $M \approx 6.5 \cdot 10^9 M_{\odot}$, $R \approx 1.8 \cdot 10^{10}$ km.
- \Rightarrow Support for linear relation.

http://xkcd.com/2135/

• The jet of M87*:

- Extends \approx 1.5kpc from the center.
- Spiral pattern hints towards precession.
- Collimation hints towards magnetic fields.
- \Rightarrow Powered by Blandford-Znajek process?
- \Rightarrow Process requires spinning central object.

• The jet of M87*:

- Extends \approx 1.5kpc from the center.
- Spiral pattern hints towards precession.
- Collimation hints towards magnetic fields.
- ⇒ Powered by Blandford-Znajek process?
- \Rightarrow Process requires spinning central object.
- General relativistic magnetohydrodynamics:
 - Simulate central object and accretion disk.
 - Various models: spinning and non-spinning.
 - Simulate image of the accretion disk.

• The jet of M87*:

- Extends \approx 1.5kpc from the center.
- Spiral pattern hints towards precession.
- Collimation hints towards magnetic fields.
- \Rightarrow Powered by Blandford-Znajek process?
- \Rightarrow Process requires spinning central object.
- General relativistic magnetohydrodynamics:
 - Simulate central object and accretion disk.
 - Various models: spinning and non-spinning.
 - Simulate image of the accretion disk.
- Comparison with observation:
 - Add Gaussian blur to simulated image.
 - Simulation reproduces main features.

- The jet of M87*:
 - Extends \approx 1.5kpc from the center.
 - Spiral pattern hints towards precession.
 - Collimation hints towards magnetic fields.
 - ⇒ Powered by Blandford-Znajek process?
 - \Rightarrow Process requires spinning central object.
- General relativistic magnetohydrodynamics:
 - Simulate central object and accretion disk.
 - Various models: spinning and non-spinning.
 - Simulate image of the accretion disk.
- Comparison with observation:
 - Add Gaussian blur to simulated image.
 - Simulation reproduces main features.
 - \Rightarrow Consistent with spinning central object.

Is M87* really a black hole, and possess a horizon?

- What the Event Horizon Telescope does not observe:
 - The EHT does not (directly) observe event horizons of black holes.
 - There is no direct observable linked to the existence of a horizon.
 - The EHT does observe (radio) photons from the vicinity of dark compact objects.
 - Some properties of horizonless objects leave imprints on emitted radio waves.

Is M87* really a black hole, and possess a horizon?

- What the Event Horizon Telescope does not observe:
 - The EHT does not (directly) observe event horizons of black holes.
 - There is no direct observable linked to the existence of a horizon.
 - The EHT does observe (radio) photons from the vicinity of dark compact objects.
 - Some properties of horizonless objects leave imprints on emitted radio waves.
- What can we learn about the nature of the central object in M87*?
 - Some types of horizonless objects may allow radiation to...
 - pass through (boson star, wormhole...),
 - be reflected (gravastar, any compact object with a surface).
 - \Rightarrow EHT observation shows dark central area, no signs of traversing or reflected radiation.

- What the Event Horizon Telescope does not observe:
 - The EHT does not (directly) observe event horizons of black holes.
 - There is no direct observable linked to the existence of a horizon.
 - The EHT does observe (radio) photons from the vicinity of dark compact objects.
 - Some properties of horizonless objects leave imprints on emitted radio waves.
- What can we learn about the nature of the central object in M87*?
 - Some types of horizonless objects may allow radiation to...
 - pass through (boson star, wormhole...),
 - be reflected (gravastar, any compact object with a surface).
 - \Rightarrow EHT observation shows dark central area, no signs of traversing or reflected radiation.
 - The accretion disk around a black hole (and similar objects) is truncated at the ISCO.
 - \Rightarrow No visible inflow within the central region, consistent with a truncated disk.

Getting more information by including polarizations

- What can we learn from including polarization information?
 - Plasma supposedly emits synchroton radiation, which is highly polarized.
 - \Rightarrow Better understanding of accretion disk, plasma flow and magnetic fields.

Getting more information by including polarizations

- What can we learn from including polarization information?
 - Plasma supposedly emits synchroton radiation, which is highly polarized.
 - $\Rightarrow\,$ Better understanding of accretion disk, plasma flow and magnetic fields.
- What do we expect from the Event Horizon Telescope?
 - Simulations of the accretion disk already include its polarized emission.
 - Polarization gives better distinction between simulated models.
 - The EHT has measured also polarization observing M87*, data being processed.
 - \Rightarrow Soon possible to exclude more models and further constrain model space.

Getting more information by including polarizations

- What can we learn from including polarization information?
 - Plasma supposedly emits synchroton radiation, which is highly polarized.
 - $\Rightarrow\,$ Better understanding of accretion disk, plasma flow and magnetic fields.
- What do we expect from the Event Horizon Telescope?
 - Simulations of the accretion disk already include its polarized emission.
 - Polarization gives better distinction between simulated models.
 - The EHT has measured also polarization observing M87*, data being processed.
 - $\Rightarrow\,$ Soon possible to exclude more models and further constrain model space.
- Can polarization tell us anything about gravity and the central object?
 - In general relativity, light propagates independent of polarization in vacuum.
 - Alternative theories may include "vacuum birefringence" speed of light differs.
 - Lensing at a massive object may lead to two polarized images of what is behind.
 - \Rightarrow Observational signature to seek in future observations.

The black hole in our backyard: the challenge of observing Sgr A*

- Some facts about Sgr A*:
 - Located in the center of our galaxy.
 - Distance from Earth \approx 7860pc.
 - Estimated mass $4 \cdot 10^6 M_{\odot}$.
 - ⇒ Nearby object of intermediate mass!

The black hole in our backyard: the challenge of observing Sgr A*

• Some facts about Sgr A*:

- Located in the center of our galaxy.
- Distance from Earth \approx 7860pc.
- Estimated mass $4 \cdot 10^6 M_{\odot}$.
- \Rightarrow Nearby object of intermediate mass!
- Comparison with M87*:
 - Mass is 1000 times smaller.
 - Distance to Earth is 2000 times shorter.
 - \Rightarrow Apparent diameter is 2 times larger.
 - ⇒ Better candidate for direct observation?

The black hole in our backyard: the challenge of observing Sgr A*

• Some facts about Sgr A*:

- Located in the center of our galaxy.
- Distance from Earth \approx 7860pc.
- Estimated mass $4 \cdot 10^6 M_{\odot}$.
- \Rightarrow Nearby object of intermediate mass!

• Comparison with M87*:

- Mass is 1000 times smaller.
- Distance to Earth is 2000 times shorter.
- \Rightarrow Apparent diameter is 2 times larger.
- ⇒ Better candidate for direct observation?
- Difficulties observing Sgr A*:
 - Matter moves at \approx min timescales.
 - \Rightarrow Dynamic object, shorter integration time.
 - Interstellar medium scatters radio waves.
 - \Rightarrow Need to compensate for image distortion.

- What have we learned so far from observing M87*?
 - Observed size: consistent with the Schwarzschild radius of a supermassive black hole.
 - Emitted radio waves: consistent with an accretion disk orbiting a spinning black hole.
 - Jet: probably driven by Blandford-Znajek process, consistent with other observations.
 - Shape of the shadow: excludes some exotic alternative models, consistent with others.

- What have we learned so far from observing M87*?
 - Observed size: consistent with the Schwarzschild radius of a supermassive black hole.
 - Emitted radio waves: consistent with an accretion disk orbiting a spinning black hole.
 - Jet: probably driven by Blandford-Znajek process, consistent with other observations.
 - Shape of the shadow: excludes some exotic alternative models, consistent with others.
- What can we potentially learn from observing Sgr A*?
 - Study massive object between stellar mass range and M87*.
 - Potentially observe accretion processes on minute timescales.
 - Gain more insights about formation and history of our own galaxy.

- What have we learned so far from observing M87*?
 - Observed size: consistent with the Schwarzschild radius of a supermassive black hole.
 - Emitted radio waves: consistent with an accretion disk orbiting a spinning black hole.
 - Jet: probably driven by Blandford-Znajek process, consistent with other observations.
 - Shape of the shadow: excludes some exotic alternative models, consistent with others.
- What can we potentially learn from observing Sgr A*?
 - Study massive object between stellar mass range and M87*.
 - Potentially observe accretion processes on minute timescales.
 - Gain more insights about formation and history of our own galaxy.
- What are future prospects of black hole astronomy?
 - Understand the nature of dark compact objects are they really black holes?
 - Test predictions of horizon, photon sphere, ISCO and their properties.
 - New tests of general relativity / other gravity theories in extreme environments.

- What have we learned so far from observing M87*?
 - Observed size: consistent with the Schwarzschild radius of a supermassive black hole.
 - Emitted radio waves: consistent with an accretion disk orbiting a spinning black hole.
 - Jet: probably driven by Blandford-Znajek process, consistent with other observations.
 - Shape of the shadow: excludes some exotic alternative models, consistent with others.
- What can we potentially learn from observing Sgr A*?
 - Study massive object between stellar mass range and M87*.
 - Potentially observe accretion processes on minute timescales.
 - Gain more insights about formation and history of our own galaxy.
- What are future prospects of black hole astronomy?
 - Understand the nature of dark compact objects are they really black holes?
 - Test predictions of horizon, photon sphere, ISCO and their properties.
 - New tests of general relativity / other gravity theories in extreme environments.

 \Rightarrow Observations of dark objects are likely to have a bright future.