Quantum manifolds

... with classical limit

Manuel Hohmann

II. Institut für theoretische Physik

Foundations of Probability and Physics - 6 Växjö - 13 June 2011

Basic idea

- Classical mechanics: Euclidean space \mathbb{R}^n
- General relativity: Riemannian manifold M
- ullet Quantum mechanics: Schwartz space ${\cal S}$

Basic idea

- Classical mechanics: Euclidean space \mathbb{R}^n
- General relativity: Riemannian manifold M
- Quantum mechanics: Schwartz space S
- Quantum gravity: quantum manifold M_Q?

Schwartz space

• Schwartz space $S(\mathbb{R}^n)$ of fast-decreasing functions:

$$\mathcal{S}(\mathbb{R}^n) = \left\{ f \in C^{\infty}(\mathbb{R}^n) \, | \, \forall \, \alpha, \beta \in \mathbb{N}^n : \sup_{\boldsymbol{x} \in \mathbb{R}^n} |x^{\alpha} D_{\beta} f(\boldsymbol{x})| < \infty \right\}$$

Infinite family of seminorms generates natural topology:

$$||f||_{\alpha,\beta} = \sup_{\boldsymbol{x} \in \mathbb{R}^n} |x^{\alpha} D_{\beta} f(\boldsymbol{x})|$$

• Scalar product inherited from $L^2(\mathbb{R}^n)$:

$$\langle f,g
angle = \int_{\mathbb{R}^n} d\mathbf{x} \, f(\mathbf{x})^* g(\mathbf{x})$$

• For convenience, drop argument \mathbb{R}^n and define $\mathcal{S}^{\neq 0} = \mathcal{S} \setminus \{0\}$.

Position expectation value

- Position operator $\mathbf{Q}: f \mapsto (\mathbf{x} \mapsto f(\mathbf{x})\mathbf{x})$
- Position expectation value:

$$ar{m{Q}}(f) = rac{\langle f, m{Q}f
angle}{\langle f, f
angle}$$

• Expectation value topology: open subsets of $S^{\neq 0}$ are pre-images of open sets $W \subset \mathbb{R}^n$:

$$\bar{\boldsymbol{Q}}^{-1}(W) = \left\{ f \in \mathcal{S}^{\neq 0} | \bar{\boldsymbol{Q}}(f) \in W \right\}$$

• For later use, define $S_0 = \bar{\textbf{\textit{Q}}}^{-1}(0)$.

Quantum manifold

- Set M_Q of points
- Quantum atlas: Collection of pairs (U_i, ϕ_i) with the following properties:
 - Each U_i is a subset of M_Q and the U_i cover M_Q
 - Each ϕ_i is a bijection of U_i onto a set $\phi_i(U_i) \subset \mathcal{S}^{\neq 0}$
 - For each i, j, the set $\phi_i(U_i \cap U_j)$ is open in the expectation value topology
 - For each i,j, the transition map $\phi_{ji} = \phi_j \circ \phi_i^{-1}$ on the overlap of any two charts, $\phi_{ji} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is continuous in the expectation value topology and differentiable in the natural topology

Quantum manifold

- Set M_Q of points
- Quantum atlas: Collection of pairs (U_i, ϕ_i) with the following properties:
 - Each U_i is a subset of M_Q and the U_i cover M_Q
 - Each ϕ_i is a bijection of U_i onto a set $\phi_i(U_i) \subset \mathcal{S}^{\neq 0}$
 - For each i, j, the set $\phi_i(U_i \cap U_j)$ is open in the expectation value topology
 - For each i,j, the transition map $\phi_{ji} = \phi_j \circ \phi_i^{-1}$ on the overlap of any two charts, $\phi_{ji} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is continuous in the expectation value topology and differentiable in the natural topology
- A quantum manifold is a set together with a quantum atlas.

Classical limit

- Expectation value topology lifts to M_Q
- Identify topologically indistinguishable elements of M_Q : Kolmogorov quotient $M_Q \xrightarrow{\mathcal{Q}} M$

Classical limit

- Expectation value topology lifts to M_Q
- Identify topologically indistinguishable elements of M_Q : Kolmogorov quotient $M_Q \xrightarrow{\mathcal{Q}} M$
- Construct "chart" of M:

 $\Rightarrow \chi_i$ is homeomorphism w.r.t. the quotient topology on X_i and the standard topology on W_i .

Classical limit

- Expectation value topology lifts to M_Q
- Identify topologically indistinguishable elements of M_Q : Kolmogorov quotient $M_Q \xrightarrow{\mathcal{Q}} M$
- Construct "chart" of M:

- $\Rightarrow \chi_i$ is homeomorphism w.r.t. the quotient topology on X_i and the standard topology on W_i .
 - Charts can be glued together to form an atlas.
- ⇒ Classical topological limit manifold exists.

Classical differentiable limit

Classical differentiable limit

Define:

$$\Psi: extbf{ extit{x}} \mapsto \left(extbf{ extit{y}} \mapsto e^{-(extbf{ extit{y}}- extbf{ extit{x}})^2}
ight)$$

- $\Rightarrow \chi_{ji} = \bar{\mathbf{Q}} \circ \phi_{ji} \circ \Psi$ is differentiable.
- ⇒ Classical limit *M* is a differentiable manifold.

• Fact: $(S^{\neq 0}, \mathbb{R}^n, \bar{\mathbf{Q}}, S_0)$ is a trivial fiber bundle.

- Fact: $(S^{\neq 0}, \mathbb{R}^n, \bar{\mathbf{Q}}, S_0)$ is a trivial fiber bundle.
- Consider a quantum atlas of M_Q .

- Fact: $(S^{\neq 0}, \mathbb{R}^n, \bar{\boldsymbol{Q}}, S_0)$ is a trivial fiber bundle.
- Consider a quantum atlas of M_Q .
- Homeomorphism χ_i can be lifted.

- Fact: $(S^{\neq 0}, \mathbb{R}^n, \bar{\boldsymbol{Q}}, S_0)$ is a trivial fiber bundle.
- Consider a quantum atlas of M_Q .
- Homeomorphism χ_i can be lifted.
- Homeomorphism ω_i exists.
- $\Rightarrow (M_Q, M, Q, S_0)$ is a fiber bundle.

Trivial quantization

- Take some arbitrary classical manifold M with charts (X_i, χ_i)
- Define $M_Q = M \times S_0$, $U_i = X_i \times S_0$ and

$$\phi_i:(\xi,g)\mapsto (\mathbf{x}\mapsto g(\mathbf{x}-\chi_i(\xi)))$$

Trivial quantization

- Take some arbitrary classical manifold M with charts (X_i, χ_i)
- Define $M_Q = M \times S_0$, $U_i = X_i \times S_0$ and

$$\phi_i:(\xi,g)\mapsto (\mathbf{x}\mapsto g(\mathbf{x}-\chi_i(\xi)))$$

- \Rightarrow (U_i, ϕ_i) are charts of a quantum atlas.
- $\Rightarrow M_O$ is a quantum manifold.
- \Rightarrow Classical limit of M_O is M.
- \Rightarrow (M_Q, M, Q, S_0) is a trivial fiber bundle hence the name "trivial quantization".

Results

- Quantum manifold M_Q
- ullet Locally homeomorphic to Schwarz space ${\cal S}$
- Classical differentiable limit manifold M
- M_Q is fiber bundle over M
- Trivial quantization of every classical manifold

Outlook

- External vs. internal time?
- Quantization of momentum?
- Quantum algebra?
- Quantization of (tensor) fields?
- Quantum gravity?

Outlook

- External vs. internal time?
- Quantization of momentum?
- Quantum algebra?
- Quantization of (tensor) fields?
- Quantum gravity?

MH, R. Punzi and M. N. R. Wohlfarth, "Quantum manifolds with classical limit", arXiv:0809.3111