Tetrads and spacetime symmetries in f(T) gravity

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

Development Fund

Symmetry 2017 - 17. October 2017

- Open questions in cosmology and gravity:
 - Accelerating phases in the history of the Universe?
 - Relation between gravity and gauge theories?
 - How to quantize gravity?

- Open questions in cosmology and gravity:
 - Accelerating phases in the history of the Universe?
 - Relation between gravity and gauge theories?
 - How to quantize gravity?
- Teleparallel gravity [Møller '61]:
 - Based on tetrad and flat spin connection.
 - Describes gravity as gauge theory of the translation group.
 - First order action, second order field equations.
 - Spin connection as Lorentz gauge degree of freedom.

- Open questions in cosmology and gravity:
 - Accelerating phases in the history of the Universe?
 - Relation between gravity and gauge theories?
 - How to quantize gravity?
- Teleparallel gravity [Møller '61]:
 - Based on tetrad and flat spin connection.
 - Describes gravity as gauge theory of the translation group.
 - First order action, second order field equations.
 - Spin connection as Lorentz gauge degree of freedom.
- f(T) gravity [Bengochea, Ferraro '09]:
 - Simple class of teleparallel theories beyond general relativity.
 - Cosmology typically features de Sitter attractors [MH, Järv, Ualikhanova '17].

- Open questions in cosmology and gravity:
 - Accelerating phases in the history of the Universe?
 - Relation between gravity and gauge theories?
 - How to quantize gravity?
- Teleparallel gravity [Møller '61]:
 - Based on tetrad and flat spin connection.
 - Describes gravity as gauge theory of the translation group.
 - First order action, second order field equations.
 - Spin connection as Lorentz gauge degree of freedom.
- f(T) gravity [Bengochea, Ferraro '09]:
 - Simple class of teleparallel theories beyond general relativity.
 - Cosmology typically features de Sitter attractors [MH, Järv, Ualikhanova '17].
 - # Cumbersome equation relating tetrad and spin connection.
 - Use notion of symmetry to find particular solutions?

Teleparallel geometry

- Fields required to define the geometry:
 - tetrad $e^a = e^a_{\mu} dx^{\mu}$,
 - spin connection $\omega_b^a = \omega_{b\mu}^a dx^\mu$.
- Spin connection chosen to be flat:

$$R^a_{\ b} = d\omega^a_{\ b} + \omega^a_{\ c} \wedge \omega^c_{\ b} = 0.$$

Teleparallel geometry

- Fields required to define the geometry:
 - tetrad $e^a = e^a_{\ \mu} dx^{\mu}$,
 - spin connection $\omega^a_{\ b} = \omega^a_{\ b\mu} dx^{\mu}$.
- Spin connection chosen to be flat:

$$R^a{}_b = d\omega^a{}_b + \omega^a{}_c \wedge \omega^c{}_b = 0.$$

- Derived quantities:
 - Metric: $g_{\mu\nu} = \eta_{ab} e^a_{\ \mu} e^b_{\ \nu}$.
 - Spacetime connection: $\Gamma^{\rho}_{\mu\nu} = e_a^{\ \rho} \left(\partial_{\nu} e^a_{\ \mu} + \omega^a_{\ b\nu} e^b_{\ \mu} \right)$.
 - Torsion: $T^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\nu\mu} \Gamma^{\rho}_{\mu\nu}$.
 - Gauge covariant derivative:

$$D_{\mu}e^{a}_{\ \nu} = \partial_{\mu}e^{a}_{\ \nu} - \Gamma^{\rho}_{\ \nu\mu}e^{a}_{\ \rho} + \omega^{a}_{\ b\mu}e^{b}_{\ \nu} = 0.$$

Teleparallel geometry

- Fields required to define the geometry:
 - tetrad $e^a = e^a_{\ \mu} dx^{\mu}$,
 - spin connection $\omega^a_{\ b} = \omega^a_{\ b\mu} dx^{\mu}$.
- Spin connection chosen to be flat:

$$R^{a}_{b} = d\omega^{a}_{b} + \omega^{a}_{c} \wedge \omega^{c}_{b} = 0.$$

- Derived quantities:
 - Metric: $g_{\mu\nu} = \eta_{ab} e^a_{\ \mu} e^b_{\ \nu}$.
 - Spacetime connection: $\Gamma^{\rho}_{\mu\nu} = e_a^{\ \rho} \left(\partial_{\nu} e^a_{\ \mu} + \omega^a_{\ b\nu} e^b_{\ \mu} \right)$.
 - Torsion: $T^{\rho}_{\ \mu\nu} = \Gamma^{\rho}_{\ \nu\mu} \Gamma^{\rho}_{\ \mu\nu}$.
 - Gauge covariant derivative:

$$D_{\mu}e^{a}_{\nu} = \partial_{\mu}e^{a}_{\nu} - \Gamma^{\rho}_{\nu\mu}e^{a}_{\rho} + \omega^{a}_{b\mu}e^{b}_{\nu} = 0.$$

• Local Lorentz (gauge) invariance with transformation Λ^a_b :

$$e^{a}_{\mu} \mapsto \Lambda^{a}_{b} e^{b}_{\mu}, \quad \omega^{a}_{b\mu} \mapsto \Lambda^{a}_{c} \Lambda^{d}_{b} \omega^{c}_{d\mu} + \Lambda^{a}_{c} \partial_{\mu} \Lambda^{c}_{b}.$$

Symmetry of the geometry

- Diffeomorphisms generated by vector field ξ.
- Invariance of spacetime geometry:
 - Metric:

$$0 = (\mathcal{L}_{\xi}g)_{\mu\nu} = \xi^{\rho}\partial_{\rho}g_{\mu\nu} + \partial_{\mu}\xi^{\rho}g_{\rho\nu} + \partial_{\nu}\xi^{\rho}g_{\mu\rho}.$$

Connection:

$$\mathbf{0} = \left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{}_{\nu\rho} = \xi^{\sigma} \partial_{\sigma} \Gamma^{\mu}{}_{\nu\rho} - \partial_{\sigma} \xi^{\mu} \Gamma^{\sigma}{}_{\nu\rho} + \partial_{\nu} \xi^{\sigma} \Gamma^{\mu}{}_{\sigma\rho} + \partial_{\rho} \xi^{\sigma} \Gamma^{\mu}{}_{\nu\sigma} + \partial_{\nu} \partial_{\rho} \xi^{\mu} .$$

Symmetry of the geometry

- Diffeomorphisms generated by vector field ξ .
- Invariance of spacetime geometry:
 - Metric:

$$0 = (\mathcal{L}_{\xi}g)_{\mu\nu} = \xi^{\rho}\partial_{\rho}g_{\mu\nu} + \partial_{\mu}\xi^{\rho}g_{\rho\nu} + \partial_{\nu}\xi^{\rho}g_{\mu\rho}\,.$$

Connection:

$$0 = \left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{}_{\nu\rho} = \xi^{\sigma} \partial_{\sigma} \Gamma^{\mu}{}_{\nu\rho} - \partial_{\sigma} \xi^{\mu} \Gamma^{\sigma}{}_{\nu\rho} + \partial_{\nu} \xi^{\sigma} \Gamma^{\mu}{}_{\sigma\rho} + \partial_{\rho} \xi^{\sigma} \Gamma^{\mu}{}_{\nu\sigma} + \partial_{\nu} \partial_{\rho} \xi^{\mu} \,.$$

• Satisfied if and only if $\exists \lambda : M \to \mathfrak{so}(1,3)$ such that [MH '15]

$$(\mathcal{L}_{\xi}e)^{a}_{\mu} = -\lambda^{a}_{b}e^{b}_{\mu}, \quad (\mathcal{L}_{\xi}\omega)^{a}_{b\mu} = D_{\mu}\lambda^{a}_{b}.$$

Symmetry of the geometry

- Diffeomorphisms generated by vector field ξ .
- Invariance of spacetime geometry:
 - Metric:

$$0 = (\mathcal{L}_{\xi} g)_{\mu\nu} = \xi^{\rho} \partial_{\rho} g_{\mu\nu} + \partial_{\mu} \xi^{\rho} g_{\rho\nu} + \partial_{\nu} \xi^{\rho} g_{\mu\rho} \,.$$

Connection:

$$0 = \left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{}_{\nu\rho} = \xi^{\sigma} \partial_{\sigma} \Gamma^{\mu}{}_{\nu\rho} - \partial_{\sigma} \xi^{\mu} \Gamma^{\sigma}{}_{\nu\rho} + \partial_{\nu} \xi^{\sigma} \Gamma^{\mu}{}_{\sigma\rho} + \partial_{\rho} \xi^{\sigma} \Gamma^{\mu}{}_{\nu\sigma} + \partial_{\nu} \partial_{\rho} \xi^{\mu} \,.$$

• Satisfied if and only if $\exists \lambda : M \to \mathfrak{so}(1,3)$ such that [MH '15]

$$\left(\mathcal{L}_{\xi}\boldsymbol{e}\right)^{a}_{\ \mu} = -\lambda^{a}_{\ b}\boldsymbol{e}^{b}_{\ \mu}\,,\quad \left(\mathcal{L}_{\xi}\omega\right)^{a}_{\ b\mu} = D_{\mu}\lambda^{a}_{\ b}\,.$$

- Several symmetry generators ξ form Lie algebra $\mathfrak{g} \subset \text{Vect}(M)$.
- Local Lie algebra homomorphism $\lambda : \mathfrak{g} \times M \to \mathfrak{so}(1,3)$.

Teleparallel f(T) action and field equations

Action:

$$S_g[e,\omega] = \int_M f(T) \det e \, d^4x$$
.

Torsion scalar:

$$T = \frac{1}{4} T^{\mu\nu\rho} T_{\mu\nu\rho} + \frac{1}{2} T^{\mu\nu\rho} T_{\rho\nu\mu} - T^{\mu}_{\ \rho\mu} T^{\nu\rho}_{\ \nu}.$$

Teleparallel f(T) action and field equations

Action:

$$S_g[e,\omega] = \int_M f(T) \det e \, d^4x$$
.

Torsion scalar:

$$T = \frac{1}{4} T^{\mu\nu\rho} T_{\mu\nu\rho} + \frac{1}{2} T^{\mu\nu\rho} T_{\rho\nu\mu} - T^{\mu}_{\rho\mu} T^{\nu\rho}_{\nu} \, .$$

- Field equations obtained from variations δ_e and $\delta_\omega = D\lambda$.
- Antisymmetric part of δ_e equation $\equiv \delta_\omega$ equation:

$$f_{TT}\left(T^{\rho}_{\ \mu\nu}\partial_{\rho}T+T^{\rho}_{\ \rho\mu}\partial_{\nu}T-T^{\rho}_{\ \rho\nu}\partial_{\mu}T\right)=0\,.$$

Teleparallel f(T) action and field equations

Action:

$$S_g[e,\omega] = \int_M f(T) \det e \, d^4x$$
.

Torsion scalar:

$$T = \frac{1}{4} T^{\mu\nu\rho} T_{\mu\nu\rho} + \frac{1}{2} T^{\mu\nu\rho} T_{\rho\nu\mu} - T^{\mu}_{\rho\mu} T^{\nu\rho}_{\nu} \, .$$

- Field equations obtained from variations δ_e and $\delta_\omega = D\lambda$.
- Antisymmetric part of δ_e equation $\equiv \delta_\omega$ equation:

$$f_{TT}\left(T^{\rho}_{\mu\nu}\partial_{\rho}T+T^{\rho}_{\rho\mu}\partial_{\nu}T-T^{\rho}_{\rho\nu}\partial_{\mu}T\right)=0\,.$$

- f Cumbersome 2-nd order differential equation unless $f_{TT} \equiv 0$.
- Find solutions through symmetry?

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^a_{b\mu} \equiv 0$.

• First order differential equation for e^a_{μ} .

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^a_{b\mu} \equiv 0$.

"Good tetrad" [Tamanini & Böhmer '12]

A tetrad is called *good tetrad* if it satisfies the antisymmetric part

$$T^{\rho}_{\ \mu\nu}\partial_{\rho}T+T^{\rho}_{\ \rho\mu}\partial_{\nu}T-T^{\rho}_{\ \rho\nu}\partial_{\mu}T=0$$

of the f(T) field equations in the Weitzenböck gauge.

ullet First order differential equation for $e^a_{\ \mu}$.

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^a_{b\mu} \equiv 0$.

"Good tetrad" [Tamanini & Böhmer '12]

A tetrad is called *good tetrad* if it satisfies the antisymmetric part

$$T^{\rho}_{\mu\nu}\partial_{\rho}T+T^{\rho}_{\rho\mu}\partial_{\nu}T-T^{\rho}_{\rho\nu}\partial_{\mu}T=0$$

of the f(T) field equations in the Weitzenböck gauge.

Symmetry condition in Weitzenböck gauge:

$$(\mathcal{L}_{\xi}e)^{a}_{\mu} = -\lambda^{a}_{b}e^{b}_{\mu}, \quad 0 = (\mathcal{L}_{\xi}\omega)^{a}_{b\mu} = D_{\mu}\lambda^{a}_{b} = \partial_{\mu}\lambda^{a}_{b}.$$

- First order differential equation for e^a_{μ} .
- \Rightarrow Lie algebra homomorphism $\lambda : \mathfrak{g} \to \mathfrak{so}(1,3)$ (independent of M).

Example: spatially flat FLRW

- 3 generators of rotations, 3 generators of translations.
- Symmetry algebra $g \cong iso(3)$.

Example: spatially flat FLRW

- 3 generators of rotations, 3 generators of translations.
- Symmetry algebra $g \cong iso(3)$.
- Representation: translations \mapsto 0, rotations $\rightarrow \mathfrak{so}(3) \subset \mathfrak{so}(1,3)$.
- Symmetry condition fixes tetrad up to n(t), a(t).

$$e^{a}_{\mu} = \begin{pmatrix} n(t) & 0 & 0 & 0 \\ 0 & a(t)\sin\theta\cos\phi & a(t)r\cos\theta\cos\phi & -a(t)r\sin\theta\sin\phi \\ 0 & a(t)\sin\theta\sin\phi & a(t)r\cos\theta\sin\phi & a(t)r\sin\theta\cos\phi \\ 0 & a(t)\cos\theta & -a(t)r\sin\theta & 0 \end{pmatrix}.$$

Example: spatially flat FLRW

- 3 generators of rotations, 3 generators of translations.
- Symmetry algebra $g \cong iso(3)$.
- Representation: translations $\mapsto 0$, rotations $\to \mathfrak{so}(3) \subset \mathfrak{so}(1,3)$.
- Symmetry condition fixes tetrad up to n(t), a(t).

$$e^{a}_{\ \mu} = \begin{pmatrix} n(t) & 0 & 0 & 0 \\ 0 & a(t)\sin\theta\cos\phi & a(t)r\cos\theta\cos\phi & -a(t)r\sin\theta\sin\phi \\ 0 & a(t)\sin\theta\sin\phi & a(t)r\cos\theta\sin\phi & a(t)r\sin\theta\cos\phi \\ 0 & a(t)\cos\theta & -a(t)r\sin\theta & 0 \end{pmatrix}.$$

• Minkowski spacetime: n(t) = a(t) = 1.

Example: closed FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $g \cong \mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

Example: closed FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $g \cong \mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.
- Representation: left / right isoclinic rotations $\rightarrow \mathfrak{so}(3) \subset \mathfrak{so}(1,3)$.
- Symmetry condition fixes tetrad up to n(t), a(t).

$$e^{a}{}_{\mu} = \begin{pmatrix} n(t) & 0 & 0 & 0 \\ 0 & \frac{a(t)\sin\theta\cos\phi}{\sqrt{1-r^2}} & a(t)r\left(\sqrt{1-r^2}\cos\theta\cos\phi - r\sin\phi\right) & -a(t)r\sin\theta\left(\sqrt{1-r^2}\sin\phi + r\cos\theta\cos\phi\right) \\ 0 & \frac{a(t)\sin\theta\sin\phi}{\sqrt{1-r^2}} & a(t)r\left(\sqrt{1-r^2}\cos\theta\sin\phi + r\cos\phi\right) & a(t)r\sin\theta\left(\sqrt{1-r^2}\cos\phi - r\cos\theta\sin\phi\right) \\ 0 & \frac{a(t)\cos\theta}{\sqrt{1-r^2}} & -a(t)r\sqrt{1-r^2}\sin\theta & a(t)r^2\sin^2\theta \end{pmatrix}.$$

Example: closed FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $g \cong \mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.
- Representation: left / right isoclinic rotations $\rightarrow \mathfrak{so}(3) \subset \mathfrak{so}(1,3)$.
- Symmetry condition fixes tetrad up to n(t), a(t).

$$\mathbf{e}^{a}{}_{\mu} = \begin{pmatrix} n(t) & 0 & 0 & 0 \\ 0 & \frac{a(t)\sin\theta\cos\phi}{\sqrt{1-r^2}} & a(t)r\left(\sqrt{1-r^2}\cos\theta\cos\phi - r\sin\phi\right) & -a(t)r\sin\theta\left(\sqrt{1-r^2}\sin\phi + r\cos\theta\cos\phi\right) \\ 0 & \frac{a(t)\sin\theta\sin\phi}{\sqrt{1-r^2}} & a(t)r\left(\sqrt{1-r^2}\cos\theta\sin\phi + r\cos\phi\right) & a(t)r\sin\theta\left(\sqrt{1-r^2}\cos\phi - r\cos\theta\sin\phi\right) \\ 0 & \frac{a(t)\cos\theta}{\sqrt{1-r^2}} & -a(t)r\sqrt{1-r^2}\sin\theta & a(t)r^2\sin^2\theta \end{pmatrix}.$$

• de Sitter spacetime: n(t) = 1, $a(t) = \cosh t$.

Example: open FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $g \cong \mathfrak{so}(1,3)$.

Example: open FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $g \cong \mathfrak{so}(1,3)$.
- Representation: identity representation so(1,3) → so(1,3).
- Symmetry condition fixes tetrad up to n(t), a(t).

$$e^{a}_{\ \mu} = \begin{pmatrix} n(t)\sqrt{1+r^2} & \frac{a(t)r}{\sqrt{1+r^2}} & 0 & 0 \\ n(t)r\sin\theta\cos\phi & a(t)\sin\theta\cos\phi & a(t)r\cos\theta\cos\phi & -a(t)r\sin\theta\sin\phi \\ n(t)r\sin\theta\sin\phi & a(t)\sin\theta\sin\phi & a(t)r\cos\theta\sin\phi & a(t)r\sin\theta\cos\phi \\ n(t)r\cos\theta & a(t)\cos\theta & -a(t)r\sin\theta & 0 \end{pmatrix}.$$

Example: open FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $g \cong \mathfrak{so}(1,3)$.
- Representation: identity representation $\mathfrak{so}(1,3) \to \mathfrak{so}(1,3)$.
- Symmetry condition fixes tetrad up to n(t), a(t).

$$e^{a}_{\ \mu} = \begin{pmatrix} n(t)\sqrt{1+r^2} & \frac{a(t)r}{\sqrt{1+r^2}} & 0 & 0 \\ n(t)r\sin\theta\cos\phi & a(t)\sin\theta\cos\phi & a(t)r\cos\theta\cos\phi & -a(t)r\sin\theta\sin\phi \\ n(t)r\sin\theta\sin\phi & a(t)\sin\theta\sin\phi & a(t)r\cos\theta\sin\phi & a(t)r\sin\theta\cos\phi \\ n(t)r\cos\theta & a(t)\cos\theta & -a(t)r\sin\theta & 0 \end{pmatrix}.$$

• Anti de Sitter spacetime: n(t) = 1, $a(t) = \cos t$.

Maximally symmetric spacetimes

- Minkowski spacetime:
 - Symmetry algebra $g \cong iso(1,3)$.
 - Repr.: translations \mapsto 0, Lorentz transformations $\rightarrow \mathfrak{so}(1,3)$.

$$e^{a}_{\ \mu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ 0 & \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ 0 & \cos\theta & -r\sin\theta & 0 \end{pmatrix}.$$

Maximally symmetric spacetimes

- Minkowski spacetime:
 - Symmetry algebra $g \cong iso(1,3)$.
 - Repr.: translations \mapsto 0, Lorentz transformations $\rightarrow \mathfrak{so}(1,3)$.

$$e^{a}_{\ \mu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ 0 & \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ 0 & \cos\theta & -r\sin\theta & 0 \end{pmatrix}.$$

- de Sitter and anti-de Sitter spacetimes:
 - Symmetry algebra $g \cong \mathfrak{so}(2,3), \mathfrak{so}(1,4)$.
 - 4 No non-trivial homomorphism $\lambda : \mathfrak{g} \to \mathfrak{so}(1,3)$.
 - 4 No solutions to symmetry condition!
 - 4 Solutions to antisymmetric field equations exist (previous slides).

Conclusion

Summary:

- Try to find solutions of f(T) gravity theories.
- Consider symmetry of metric and connection.
- Work in Weitzenböck gauge $\omega^a_{b\mu} = 0$.
- Some symmetric tetrads solve antisymmetric field equations.
- # Relation does not hold for dS and AdS spacetimes.

Conclusion

Summary:

- Try to find solutions of f(T) gravity theories.
- Consider symmetry of metric and connection.
- Work in Weitzenböck gauge $\omega^a_{b\mu} = 0$.
- Some symmetric tetrads solve antisymmetric field equations.
- Relation does not hold for dS and AdS spacetimes.

Outlook:

- Relation between symmetry condition and field equations?
- Further solutions with other symmetries?