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e Newman-Penrose formalism: polarization of gravitational waves
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e Waves in torsion teleparallel gravity
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@ Open questions in cosmology and gravity:
o Accelerating phases in the history of the Universe?
o Relation between gravity and gauge theories?
e How to quantize gravity?
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@ Open questions in cosmology and gravity:
o Accelerating phases in the history of the Universe?
o Relation between gravity and gauge theories?
e How to quantize gravity?
@ Teleparallel gravity oler s1:
e Based on tetrad and flat spin connection.
Describes gravity as gauge theory of the translation group.
First order action, second order field equations.
Spin connection as Lorentz gauge degree of freedom.
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e How to quantize gravity?
@ Teleparallel gravity oler s1:

e Based on tetrad and flat spin connection.
Describes gravity as gauge theory of the translation group.
First order action, second order field equations.
Spin connection as Lorentz gauge degree of freedom.
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Based on metric and flat, symmetric connection.
Describes gravity as non-metricity of the connection.
First order action, second order field equations.
Contains diffeomorphisms as gauge group.
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@ Open questions in cosmology and gravity:

o Accelerating phases in the history of the Universe?

o Relation between gravity and gauge theories?

e How to quantize gravity?
@ Teleparallel gravity oler s1:

e Based on tetrad and flat spin connection.
Describes gravity as gauge theory of the translation group.
First order action, second order field equations.
Spin connection as Lorentz gauge degree of freedom.
@ Symmetric teleparallel gravity mester vo 99
Based on metric and flat, symmetric connection.
Describes gravity as non-metricity of the connection.
First order action, second order field equations.
Contains diffeomorphisms as gauge group.

@ Gravity formulated as gauge theories.
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e Principal symbol: speed of gravitational waves
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
DAgwWB(x)=0.
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@ Consider linear partial differential equation (PDE) system:
D gWB(x)=0.
e N equations labeledby A=1,... N.

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 7/29



Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
DAgWB(x)=0.

o N equations labeledby A=1,... N.
o N fields W8 labeled by B=1,...,N.
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
DAgwWB(x)=0.
e N equations labeledby A=1,... N.

o N fields WB labeledby B=1,... N.
o Fields depend on spacetime point x.
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
D swB(x) =0.

N equations labeledby A=1,... N.
N fields W8 labeledby B=1,...,N.
Fields depend on spacetime point x.
m-th order partial differential operator with respect to x.
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
D swB(x) =0.

N equations labeledby A=1,... N.
N fields W8 labeledby B=1,..., N.
Fields depend on spacetime point x.
e m-th order partial differential operator with respect to x.
@ Structure of the linear partial differential operator:

D' = MAg(x) + MAg" ()8, + ... + MAg" 7 (x)0),, - - O,

m -
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
DAgwWB(x)=0.
N equations labeled by A=1,...,N.
N fields W8 labeledby B=1,..., N.
Fields depend on spacetime point x.
e m-th order partial differential operator with respect to x.
@ Structure of the linear partial differential operator:

DAg = MAg(x) + MAg" (x)8,, + ... + MAgH#m(x)d,, - - -,

o Coefficients in general depend on spacetime point.
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
DAgwWB(x)=0.

N equations labeledby A=1,... N.
N fields W8 labeledby B=1,..., N.
Fields depend on spacetime point x.
e m-th order partial differential operator with respect to x.
@ Structure of the linear partial differential operator:

DAg = MAg(x) + MAg" ()0, + ...+ MAg" 7 (x)0),, - - 0,

o Coefficients in general depend on spacetime point.
o Partial derivatives d,, with respect to spacetime coordinates.
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
DAgwWB(x)=0.

N equations labeledby A=1,... N.
N fields W8 labeledby B=1,..., N.
Fields depend on spacetime point x.
e m-th order partial differential operator with respect to x.
@ Structure of the linear partial differential operator:

D'g = MAg(x) + MAg" ()8, + ... + MAg" 7 (x)0),, - - O,

o Coefficients in general depend on spacetime point.
o Partial derivatives d,, with respect to spacetime coordinates.

@ Consider plane wave ansatz W*(x) = UAgk«X" for the field:
DAguB(x) = (MAB(X) o PMAGHEm (XK, ...kum) PAghuxt

m -
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Principal symbol of a linear PDE

@ Consider linear partial differential equation (PDE) system:
DAgwWB(x)=0.

N equations labeledby A=1,... N.
N fields W8 labeledby B=1,..., N.
Fields depend on spacetime point x.
e m-th order partial differential operator with respect to x.
@ Structure of the linear partial differential operator:

D'g = MAg(x) + MAg" ()8, + ... + MAg" 7 (x)0),, - - O,

o Coefficients in general depend on spacetime point.
o Partial derivatives d,, with respect to spacetime coordinates.

@ Consider plane wave ansatz W4(x) = WAe " for the field:
DAgVB(x) = (MAg(x) + ...+ PM g (x)k,, -k, ) Fheh".

m -

@ Principal symbol is the highest order term in wave covector k,:

PAg(x, k) = MAgH im (x)Ky, -+ Ky, -
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Principal polynomial and propagation speed

@ Principal polynomial:

p(x, k) = det PAg(x, k).

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 8/29



Principal polynomial and propagation speed

@ Principal polynomial:
p(x, k) = det PAg(x, k).

@ PDE of order p is called strictly hyperbolic if there exists a
covector k, such that for all non-zero covectors k,, the polynomial
p(x, k + tk) in t has m distinct real roots.
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Principal polynomial and propagation speed

@ Principal polynomial:
p(x, k) = det PAg(x, k).

@ PDE of order p is called strictly hyperbolic if there exists a
covector @ such that for all non-zero covectors k,, the polynomial
p(x, k + tk) in t has m distinct real roots.

@ Hyperbolic PDE has well-defined initial value problem:

o Foliation of spacetime by spacelike hypersurfaces with covector I"(H.
o Initial data on chosen hypersurface t = 0.

@ Non-vanishing initial data only on compact subset.

o PDE determines propagation of initial data over time.

o Wave front: outer shell of non-vanishing propagating field.
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Principal polynomial and propagation speed

@ Principal polynomial:
p(x, k) = det PAg(x, k).

@ PDE of order p is called strictly hyperbolic if there exists a
covector @ such that for all non-zero covectors k,, the polynomial
p(x, k + tk) in t has m distinct real roots.

@ Hyperbolic PDE has well-defined initial value problem:

Foliation of spacetime by spacelike hypersurfaces with covector I"(H.
Initial data on chosen hypersurface t = 0.

Non-vanishing initial data only on compact subset.

PDE determines propagation of initial data over time.

o Wave front: outer shell of non-vanishing propagating field.

@ PDE theory: covectors k,, of wave front satisfy p(x, k) = 0.
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Principal polynomial and propagation speed

@ Principal polynomial:
p(x, k) = det PAg(x, k).

@ PDE of order p is called strictly hyperbolic if there exists a
covector @ such that for all non-zero covectors k,, the polynomial
p(x, k + tk) in t has m distinct real roots.

@ Hyperbolic PDE has well-defined initial value problem:

Foliation of spacetime by spacelike hypersurfaces with covector I"(H.
Initial data on chosen hypersurface t = 0.

Non-vanishing initial data only on compact subset.

PDE determines propagation of initial data over time.

o Wave front: outer shell of non-vanishing propagating field.

@ PDE theory: covectors k, of wave front satisfy p(x, k) = 0.
= Propagation speed determined by zeros of principal polynomial.
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!
& There exist directions W4 with PAg(x, k)U8 = 0 for all k.
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!

& There exist directions WA with PAg(x, k)W = 0 for all k.

o Gauge degrees of freedom.
@ No propagation - not physical modes.
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!

& There exist directions W4 with PAg(x, k)U8 = 0 for all k.

o Gauge degrees of freedom.
@ No propagation - not physical modes.

« Endomorphism PAg(x, k) has non-trivial kernel.
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!

& There exist directions W4 with PAg(x, k)U8 = 0 for all k.

o Gauge degrees of freedom.
@ No propagation - not physical modes.

« Endomorphism PAg(x, k) has non-trivial kernel.
@ Block decomposition of principal symbol:

PAB(X, k) _ {PAB(Xv k) ‘ 0\

\ o [0
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!

& There exist directions W4 with PAg(x, k)U8 = 0 for all k.

o Gauge degrees of freedom.
@ No propagation - not physical modes.

« Endomorphism PAg(x, k) has non-trivial kernel.
@ Block decomposition of principal symbol:

PAB(X, k) _ {PAB(Xv k) ‘ 0\

\ o [0

o Gauge degrees of freedom.
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!

& There exist directions W4 with PAg(x, k)U8 = 0 for all k.

o Gauge degrees of freedom.
@ No propagation - not physical modes.

« Endomorphism PAg(x, k) has non-trivial kernel.
@ Block decomposition of principal symbol:

PAB(X,k) _ {PAB(Xvk) ‘ 0\

\ o o

o Gauge degrees of freedom.
e Physical degrees of freedom.
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!

& There exist directions W4 with PAg(x, k)U8 = 0 for all k.

o Gauge degrees of freedom.
@ No propagation - not physical modes.

« Endomorphism PAg(x, k) has non-trivial kernel.
@ Block decomposition of principal symbol:

PAB(X,k) _ {PAB(Xvk) ‘ 0\

\ o [0

o Gauge degrees of freedom.
e Physical degrees of freedom.

@ Non-trivial restricted principal polynomial: p(x, k) = det PAg(x, k).
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Principal symbol for theories with gauge freedom

@ Gauge theories lead to p(x, k) = 0 for all k!

& There exist directions W4 with PAg(x, k)U8 = 0 for all k.

o Gauge degrees of freedom.
@ No propagation - not physical modes.

« Endomorphism PAg(x, k) has non-trivial kernel.
@ Block decomposition of principal symbol:

PAB(X, k) _ {PAB(Xv k) ‘ 0\

\ o [0

o Gauge degrees of freedom.
e Physical degrees of freedom.

@ Non-trivial restricted principal polynomial: p(x, k) = det PAg(x, k).
@ Covectors k,, of physical wave front satisfy p(x, k) = 0.
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e Newman-Penrose formalism: polarization of gravitational waves
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Newman-Penrose formalism

@ Complex double null basis of the tangent bundle:

2 V2ot V2
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Newman-Penrose formalism

@ Complex double null basis of the tangent bundle:

|=0;+08,, n= 8,—82’ m= 6X+Iay, m = 6X—/8y.
2 V2 V2
@ Consider plane null wave with k, = —wl, and u=1t—-z
hu /u/elk uxt h Iwu‘
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Newman-Penrose formalism

@ Complex double null basis of the tangent bundle:

81 - 82 ax + Iay — 3)( - Iay
l = 8 + 8 ’ n= 9 m= 9 m= .
t z D) \/E \/é
@ Consider plane null wave with k, = —wl, and u=1t—-z
hH ,We’k uxt h Ve/wu

@ Effect of the wave on test particles - geodesic deviation:

VPV, (VOVes) = =R, o vPVos” .
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Newman-Penrose formalism

@ Complex double null basis of the tangent bundle:

81 - 82 ax + Iay — ax - Iay
l = 8 + 8 ’ n= 9 m= 9 m= .
t z D) \/E \/§
@ Consider plane null wave with k, = —wl, and u=1t—-z
hH ,We’k uxt h Ve/wu

@ Effect of the wave on test particles - geodesic deviation:
VPV, (VOV,s) = =R, . vPvos” .

@ Riemann tensor determined by “electric” components:

1 1 1 1;

v, = —éRn/nl 12h//, V3 = _éRnlnrﬁ = Zhlr'na
1. 1.

\U4 = —Rnﬁmm = Ehmﬁn cb22 = —annFn = Ehmﬁv-
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Polarisations of gravitational waves

Effect of the different polarizations on spherical shell of test masses:

© —

Wy, \Tf4 2o Vs, \Tf3 v,

tensors breathing vectors longitudinal
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E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:

o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).
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E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:

o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).

@ Transformation of NP components under basis transformation:

Vo

SN

Vy<— V53— Oy
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E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:

o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).

@ Transformation of NP components under basis transformation:

Vo

SN

Vy<— V33— Dy

@ Possible sets of non-vanishing NP components:
M Il5: 6 polarizations, all modes are allowed.
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E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:

o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).

@ Transformation of NP components under basis transformation:

Vo

SN

Vy<—V3—> P

@ Possible sets of non-vanishing NP components:

M Il5: 6 polarizations, all modes are allowed.
M 11l5: 5 polarizations, W, = 0, no longitudinal mode.
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E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:
o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).

@ Transformation of NP components under basis transformation:

Vo

SN

Vp=—"V3—> 0

@ Possible sets of non-vanishing NP components:
M Il5: 6 polarizations, all modes are allowed.
M 11l5: 5 polarizations, W, = 0, no longitudinal mode.
[] Ns: 3 polarizations, W, = W3 = 0, only tensor and breathing modes.
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E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:
o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).

@ Transformation of NP components under basis transformation:

Vo

SN

Vp=—"V3——> 0

@ Possible sets of non-vanishing NP components:
M Il5: 6 polarizations, all modes are allowed.
M 11l5: 5 polarizations, W, = 0, no longitudinal mode.
[] Ns: 3 polarizations, W, = W3 = 0, only tensor and breathing modes.
B N,: 2 polarizations, W, = W3 = d,, = 0, only tensor modes.
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E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:
o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).

@ Transformation of NP components under basis transformation:

Vo

SN

Vy<— V53— Dy

@ Possible sets of non-vanishing NP components:
M Il5: 6 polarizations, all modes are allowed.
M 11l5: 5 polarizations, W, = 0, no longitudinal mode.
[] Ns: 3 polarizations, W, = W3 = 0, only tensor and breathing modes.
B N,: 2 polarizations, W, = W3 = ®,, = 0, only tensor modes.
[] O4: 1 polarization, ¥, = W3 = W, = 0, only breathing mode.

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 13/29



E(2) classification of gravitational waves

@ Consider Lorentz transformation which fixes wave covector k,:
o Rotations around wave covector & null rotations (= boost + rotation).
e Set of transformations isomorphic to Euclidean group E(2).

@ Transformation of NP components under basis transformation:

Vo

SN

Vy<— V53— Oy

@ Possible sets of non-vanishing NP components:
M Il5: 6 polarizations, all modes are allowed.
M 11l5: 5 polarizations, W, = 0, no longitudinal mode.
[] Ns: 3 polarizations, W, = W3 = 0, only tensor and breathing modes.
B N,: 2 polarizations, W, = W3 = ®,, = 0, only tensor modes.
[] O4: 1 polarization, ¥, = W3 = W, = 0, only breathing mode.
B Oy: no gravitational waves.
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e Waves in non-metricity teleparallel gravity

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 14/29



Field content and geometry

@ Fundamental fields in the gravity sector:
e Metric g,

X
o Flat, symmetric affine connection I'*,,,.
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Field content and geometry

@ Fundamental fields in the gravity sector:
e Metric g,

X
o Flat, symmetric affine connection I'*,,,.
@ Derived quantities:

e Volume form /— det gd*x.
o Levi-Civita connection

o 1
rpul/ = 59”0(8ugau + &/Q;w - 8aguu) .

X
e Non-metricity Q,,., = V, 0,
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Field content and geometry

@ Fundamental fields in the gravity sector:
o Metric g,

X
o Flat, symmetric affine connection I'*,,,.

@ Derived quantities:

e Volume form /— det gd*x.
o Levi-Civita connection

o 1
rp;uz = §gpa(8ugou + 81/9;10 - &rguu) .

e Non-metricity Q,,., = épg,“,.
@ Gauge fixing
e Perform local coordinate transformation:
, 0x™ oxP X, Ox™ OxP ax'Px 9?x>  Ox'P
hr = axm gxm 98 L = i gxw ax P aximax” oxa

X
= Coincident gauge: set”,, =0 = Q.. = 0,9,

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 15/29



Most general action and corresponding field equations

@ Most general action:

+ C30agl‘«1/ + C4($E)Z Qy) + = (Qag/u/ + 6(HQ > :| Qay,y .
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Most general action and corresponding field equations

@ Most general action:
+ C30agp,1/ + 045? QV) + = (Qag,uu + 6(NQ ) :| Qal“’ .

@ Consider linear perturbation of the metric:

Guv = N + h;u/ .
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Most general action and corresponding field equations

@ Most general action:

S= _/ \/7[01 Q% + Q%)
+ C3Q% gy + Cad(), éy) + = (Qag,w +60,Q, ) } Q.M.
@ Consider linear perturbation of the metric:
v = Myw + Ao -

@ Linearized vacuum field equations:

0 = 26177000y My + €27 (000 oy + OaBishy)
+ 20377W77m77a08aaahm + C477wg(8uawhua + auawhua)
+ CSnuunw’ynaaaocawha'y + CSnwgauatha .
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Principal polynomial and speed of propagation

@ Decomposition of amplitude fup in irreducible components:

A 1 Kk 1 o
h)\p = S)\p+2k()\ Vp)+§ <77)\p — n“”kzy) T+ (k)\kp — Zn/\pn Bkakg> U.
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Principal polynomial and speed of propagation

@ Decomposition of amplitude fup in irreducible components:

2~ _ 1 k)\kp 1 aﬁ
h)\p - SAp+2k()\ Vp)+§ <77)\p - T]MVk,uV) T+ (k)\kp - an\pn kak/j) U.
@ Conditions imposed on irreducible components:

Sy, =0, k*Sy,=0, k°V,=0.
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Principal polynomial and speed of propagation

@ Decomposition of amplitude fup in irreducible components:

. 1 Kok 1
hyp = Sxp+2k» VP)+§ (77)\[) - n“”kzy) T+ (k)\kp 2l 5kak,3> U.

@ Conditions imposed on irreducible components:
nApS)\p =0, k/\S,\p =0, k”V,=0.
@ Decomposed field equations:

3
0 = (205 + 05) (1N Kaks)* T + 7105 + 2(C1 + C2 + Ca)] (1 kaks)*U,

3
0 = (2¢1 +8c3 + C5) (1P kaks) T + 5(205 +C+ ca)(n*Pkaks)? U,

0 = (2¢1 + ¢ + ¢4) (1P kaks)? Vi, ,
0 = 2¢1n*P ko ks S, -
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Principal polynomial and speed of propagation

@ Decomposition of amplitude fup in irreducible components:

. 1 Kok 1
hyp = Sxp+2k» VP)+§ (77)\[) - n“”kzy) T+ (k)\kp 2l 5kak,3> U.

@ Conditions imposed on irreducible components:
nApS)\p =0, k/\S,\p =0, k”V,=0.
@ Decomposed field equations:

3
0 = (205 + 05) (1" "Kaks)* T + 7105 + 2(C1 + C2 + Ca)) (1 kaks)*U,

3
0= (201 + 80 + 05)(1" ku ki) T + 5(205 + G + Ca) (1 kuks)U

0 = (2¢1 + Co + C4)(1kaks)? Vi, ,
0 = 2¢11" ko ks Sy -

@ Principal polynomial p(x, k) = const. - (*7k,kz)'°.
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Principal polynomial and speed of propagation

@ Decomposition of amplitude fup in irreducible components:

. 1 Kok 1
hyp = Sxp+2k» VP)+§ (77)\[) - n“”k:y) T+ (k)\kp 2l 5kakg> U.

@ Conditions imposed on irreducible components:
nApS)\p =0, k/\S,\p =0, k”V,=0.
@ Decomposed field equations:

3
0 = (205 + 05) (1N Kaks)* T + 7105 + 2(C1 + C2 + Ca)] (1 kaks)*U,

3
0 = (2¢1 +8c3 + C5) (1P kaks) T + 5(205 +C+ ca)(n*Pkaks)? U,
0 = (2¢1 + ¢ + ¢4) (1P kaks)? Vi, ,
0 = 2¢1n*P ko ks S, -

@ Principal polynomial p(x, k) = const. - (*7k,kz)'°.
° naﬁkakﬁ = 0 & propagation at the speed of light.
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Newman-Penrose formalism

@ Assume plane null wave h,,, = h,, e**" with *fk,ks = 0.
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Newman-Penrose formalism

@ Assume plane null wave h,,, = h,, e**" with *fk,ks = 0.
= Terms involving ¢y and ¢z do not contribute for (A, = 0.
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Newman-Penrose formalism

@ Assume plane null wave h,,, = h,, e**" with *fk,ks = 0.
= Terms involving ¢y and ¢z do not contribute for (A, = 0.
= Field equations expressed in Newman-Penrose basis:

O=Em=—(c2+cs+ C5)}.7In =+ CSf'mﬁn
0=Emn=Em=—(c+ C4)hlm7

0 = Emm = Emm = cshy,
0=Ey=Epn=—(co+ca)hy.
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Newman-Penrose formalism

@ Assume plane null wave h,,, = h,, e**" with *fk,ks = 0.
= Terms involving ¢y and ¢z do not contribute for (A, = 0.
= Field equations expressed in Newman-Penrose basis:

O=Em=—(c2+cs+ C5)}.7In =+ CSf'mﬁn
0=Emn=Em=—(c+ C4)hlm7

0 = Emm = Emm = cshy,
0=Ey=Epn=—(co+ca)hy.

@ Possible E(2) classes:
B ¢ + ¢, = cs = 0: all six modes are allowed = llg.
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Newman-Penrose formalism

@ Assume plane null wave h,,, = h,, e**" with *fk,ks = 0.
= Terms involving ¢y and ¢z do not contribute for (A, = 0.
= Field equations expressed in Newman-Penrose basis:

0=Em= —(02 + C4 + C5)}.7In + CSf'mﬁh
0= Emn = Enm = _(02 + C4)hlm7
0 = Epnim = Eqm = cshy,
0=Ey=Ep=—(ca+ca)hy.

@ Possible E(2) classes:

B ¢ + ¢, = cs = 0: all six modes are allowed = ls.
M ¢ +c, =0, c5 #0: only scalar U, ~ hy prohibited = lls.
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Newman-Penrose formalism

@ Assume plane null wave h,,, = h,, e**" with *fk,ks = 0.
= Terms involving ¢y and ¢z do not contribute for (A, = 0.
= Field equations expressed in Newman-Penrose basis:

0= Enn = —(Cz + Ca + €5)hin + C5hmim ,
0=Enn=Epm=—(Co+ cs)hm,
0 = Emm = Emm = cshy,
0=Ey=Ep=—(ca+cs)hy.
@ Possible E(2) classes:
B ¢ + ¢, = c5 = 0: all six modes are allowed = llg.

M ¢ + ¢ =0, cs # 0: only scalar W, ~ fy prohibited = lls.
L] co+cs #0, 6o+ ¢4+ 5 # 0: also vector W3 ~ hyy, prohibited = Na.
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Newman-Penrose formalism

@ Assume plane null wave h,,, = h,, e**" with *fk,ks = 0.
= Terms involving ¢y and ¢z do not contribute for (A, = 0.
= Field equations expressed in Newman-Penrose basis:

0=Em=—(co+Cy+ Cs)hyp + cshmm,
0=Emn=Em=—(c+ C4)hlm7

0 = Emm = Emm = cshy,
0=Ey=Epn=—(co+ca)hy.

@ Possible E(2) classes:
B ¢ + ¢, = cs = 0: all six modes are allowed = ls.
M c;+c, =0, cs # 0: only scalar W, ~ hy prohibited = lls.
[ e +cs #0, ¢+ cs + c5 # 0: also vector Wz ~ hyy, prohibited = N.
M ¢ +c+0c5=0, c5 #0: also scalar ®s ~ hym prohibited = No.
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Gravitational wave polarisations

Co> = sinf cos ¢
C4 = sinfsin ¢
Cs = cosf

B N,

[J N3

M s

Ml

M
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e Waves in torsion teleparallel gravity
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Field content and geometry

@ Fundamental fields in the gravity sector:
o Coframe field 82 = 92, dx*.
o Flat spin connection &2, = &2, dx*.
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Field content and geometry

@ Fundamental fields in the gravity sector:
o Coframe field 82 = 92, dx*.
o Flat spin connection &2, = &2, dx*.

@ Derived quantities:
e Frame field e, = €,40,, with 1¢,0° = 65.
e Metric g,., = nap0?,.6°,.
e Volume form Ad*x = 6° A ' A 62 A 653,
o Levi-Civita connection

o

1
Wab = —E(Lebbecdga + te,te,d0p — LeaLedeC)QC :

o Torsion T2 = d62 + 3, A 6°.

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019



Field content and geometry

@ Fundamental fields in the gravity sector:
o Coframe field 82 = 92, dx*.
o Flat spin connection &2, = &2, dx*.

@ Derived quantities:
e Frame field e, = €,40,, with 1¢,0° = 65.
e Metric g,., = nap0?,.6°,.
e Volume form Ad*x = 6° A ' A 62 A 653,
o Levi-Civita connection

o

1
Wab = —E(Lebbecdga + te,te,d0p — LeaLebdec)ec :

o Torsion T2 = d62 + 3, A 6°.
@ Gauge fixing
@ Perform local Lorentz transformation:

0% = /\abeb s (:)/ab = /\ac(:)cd/\bd + /\ac('j/\bC .

= Weitzenbdck gauge: set w3 = 0.
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Most general action and corresponding field equations

@ Most general action:

)
S = 57 / d*xe(c1 THP T, + CoTHP T, + 3T, T,") .
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Most general action and corresponding field equations

@ Most general action:
1
S=53 / d*xe(c1 THP T, + CoTHP T, + 3T, T,") .

@ Linear perturbation:
Hau = Aaﬂ + AapnpaTgﬂ .
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Most general action and corresponding field equations

@ Most general action:
S= # / d*xe(c1 THP T, + CoTHP T, + 3T, T,") .
@ Linear perturbation:
0%, = D% + D217 7o,
@ Linearized vacuum field equations:
5 (F'*7 + BM7) = 0.
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Most general action and corresponding field equations

@ Most general action:
S= # / d*xe(c1 THP T, + CoTHP T, + 3T, T,") .
@ Linear perturbation:
0%, = D% + D217 7o,
@ Linearized vacuum field equations:
95 (F'"7 + BM7) = 0.

e Symmetric perturbation part, ¢, = 7(,.) = %h,w:

Freo = (201 + G2) (74" — 9P 9
+ 3 [(07¢% = 0ad™ )" — (079 0 — Dad™)n*7] .
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Most general action and corresponding field equations

@ Most general action:
1
S=53 / d*xe(c1 THP T, + CoTHP T, + 3T, T,") .

@ Linear perturbation:
Hau = Aa’u + Aapnponm .
@ Linearized vacuum field equations:
0, (F*P7 + B'7) =0.

e Symmetric perturbation part, ¢, = 7(,.) = %h,w:
FrPT = (2¢1 4 o) (07 9HP — OPPH7)
+C3[(070%a — 0ad™? )" — (076" a — Dad™)n"] .
e Antisymmetric perturbation part, a,,, = 7,
BrP? = (2¢1 — ¢) (07 a@*P — 07a"?) + (2c2 + c3)0"a’” .
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Principal polynomial and speed of propagation

@ Decomposition of amplitude 7, relative to wave vector:
f‘ga = kgng—i- ngg + kg W, + Q/ga .
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Principal polynomial and speed of propagation

@ Decomposition of amplitude 7, relative to wave vector:
T80 = Kgko U + Vks + kgW, + Qg .
@ Conditions imposed on projected components:
kaVe =0, kW*=0, k,Q%3=0, k,Qz*=0.
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Principal polynomial and speed of propagation

@ Decomposition of amplitude 7, relative to wave vector:
P50 = Kako U+ Viks + ksW, + Qgo -
@ Conditions imposed on projected components:
ko V¥ =0, kW*=0, k,Q*3=0, k,Q3*=0.
= U and V, cancel in field equations - pure gauge fields.
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Principal polynomial and speed of propagation

@ Decomposition of amplitude 7, relative to wave vector:
P50 = Kako U+ Viks + ksW, + Qgo -
@ Conditions imposed on projected components:
ko V¥ =0, kW*=0, k,Q*3=0, k,Q3*=0.

= U and V, cancel in field equations - pure gauge fields.
@ Write Q,3 in trace, symmetric traceless and antisymmetric part:

TR TK TK 1 TK kaK‘ T
Q""=8"+A +3<n nl“jkuk,,>o"'

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 23/29



Principal polynomial and speed of propagation

@ Decomposition of amplitude 7, relative to wave vector:
T80 = Kpko U + Vgky + ksW, + Qg .
@ Conditions imposed on projected components:
ko V¥ =0, kW*=0, k,Q*3=0, k,Q3*=0.

= U and V, cancel in field equations - pure gauge fields.
@ Write Q,3 in trace, symmetric traceless and antisymmetric part:

=T A (n—nk:k> o
@ Decomposed field equations:
0= (2¢1 + & + &3) (NP kaks)2W* , 0 = (2¢1 — Co)n*P ko ksA™
0= (2¢1 + & +3c3)n*PkoaksQ,, 0= (2¢1 + C)*’koksS™" .
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Principal polynomial and speed of propagation

@ Decomposition of amplitude 7, relative to wave vector:
T80 = Kpko U + Vgky + ksW, + Qg .
@ Conditions imposed on projected components:
ko V¥ =0, kW*=0, k,Q*3=0, k,Q3*=0.

= U and V, cancel in field equations - pure gauge fields.
@ Write Q,3 in trace, symmetric traceless and antisymmetric part:

Qm:SmH\M% ("M_WKV/QIJ ..
@ Decomposed field equations:
0= (2¢1 + & + &) (1N koks)2 W, 0 = (2¢1 — Co)1* ko kAT,
0=(2¢1 + & +363)* ko ks Q7 , 0= (2¢1 + &)™ ko ks S™" .
@ Principal polynomial p(x, k) = const. - (7 k,ks)'®.

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 23/29



Principal polynomial and speed of propagation

@ Decomposition of amplitude 7, relative to wave vector:
T80 = Kpko U + Vgky + ksW, + Qg .
@ Conditions imposed on projected components:
ko V¥ =0, kW*=0, k,Q*3=0, k,Q3*=0.

= U and V, cancel in field equations - pure gauge fields.
@ Write Q,3 in trace, symmetric traceless and antisymmetric part:

=T A (n—nk:k> o
@ Decomposed field equations:
0= (2¢1 + & + &3) (NP kaks)2W* , 0 = (2¢1 — Co)n*P ko ksA™
0= (2¢1 + & +3c3)n*PkoaksQ,, 0= (2¢1 + C)*’koksS™" .

@ Principal polynomial p(x, k) = const. - (7 k,ks)'®.
@ 1*k,ks = 0 < propagation at the speed of light.
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Newman-Penrose formalism

@ Assume plane null wave 7, = %, €%:X" with n°*’k, ks = 0.
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Newman-Penrose formalism

@ Assume plane null wave 7, = %, " with n®k, ks = 0.
= Field equations expressed in Newman-Penrose basis:
0 = Enn = (2¢1 + C2 + C3) bt + 2C30mm + (2C1 + G2 + C3)&n,
0 = Emn = (2¢1 + C2)pmi + (261 — C2)Em1
0 = Enm = —C3im — (202 + C3)&m,
0= Emm = —Cadu,
0=Ep=(2¢1 + C2)oy , -
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Newman-Penrose formalism

@ Assume plane null wave 7, = %, " with n®k, ks = 0.
= Field equations expressed in Newman-Penrose basis:
0 = Enn = (2¢1 + C2 + C3) bt + 2C30mm + (2C1 + G2 + C3)&n,
0 = Emn = (201 + C2)mi + (2¢1 — C2)&m,
0 = Enm = —C3im — (2C2 + C3)am,
0= Emm = —Cadu,
0= Ep=(2ci + ), -

@ Possible E(2) classes:
B 2¢; + ¢, = ¢; = 0: all six modes are allowed = Ilg.
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Newman-Penrose formalism

@ Assume plane null wave 7, = %, " with n®k, ks = 0.
= Field equations expressed in Newman-Penrose basis:

0 = Epn = (261 + G2 + C3)bp + 2C36mm + (2¢1 + C2 + C3) &,
0 = Emn = (2¢1 + C2)dmi + (2¢1 — C2)&m,
0 = Enm = —C3im — (2C2 + C3)am,
0= Emm = —Cadu,
0= Ep=(2ci + ), -

@ Possible E(2) classes:

B 2¢; + ¢, = ¢; = 0: all six modes are allowed = Ilg.

W 2ci(c+ )+ c§ =0, 2¢1 + ¢ + ¢c3 # 0: only scalar Wy ~ hy=0
= llls.
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Newman-Penrose formalism

@ Assume plane null wave 7, = %, " with n®k, ks = 0.
= Field equations expressed in Newman-Penrose basis:
0 = Enn = (2¢1 + C2 + C3) bt + 2C30mm + (2C1 + G2 + C3)&n,
0 = Emn = (2¢1 + C2)dmi + (2¢1 — C2)&m,
0 = Enm = —C3im — (2C2 + C3)am,
0= Emm = —Cadu,
0= Ep=(2ci + ), -
@ Possible E(2) classes:
B 2¢; + ¢, = ¢; = 0: all six modes are allowed = Ilg. .
[ | icﬁlig +c3)+ c§ =0,2c1 +c +c3 #0: only scalar WV, ~ hy =0

(] 2¢y(c2 + ¢3) + €3 # 0, 2¢1 + 2 + c3 # 0: also vector W3 ~ hjy, = 0
= N3.
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Newman-Penrose formalism

@ Assume plane null wave 7, = %, " with n®k, ks = 0.
= Field equations expressed in Newman-Penrose basis:

0 = Enn = (2¢1 + C2 + C3) bt + 2C30mm + (2C1 + G2 + C3)&n,
0 = Emn = (201 + C2)mi + (2¢1 — C2)&m,

0 = Enm = —C3im — (2C2 + C3)am,

0= Emm = —Cadu,

0=Ep=(2¢1 + )y, -

@ Possible E(2) classes:
B 2¢; + ¢, = ¢; = 0: all six modes are allowed = Ilg. )
W 2ci(c+ )+ c§ =0,2c1 +c +c3 #0: only scalar WV, ~ hy =0
= llls.
(] 2¢y(c2 + ¢3) + €3 # 0, 2¢1 + 2 + c3 # 0: also vector W3 ~ hjy, = 0
= N3. .
B 2¢) + ¢ +03=0, c3 #0: also scalar ®p5 ~ A = 0 = Na.
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Gravitational wave polarisations

Cc1 =sinfcos ¢
Co = sinfsin ¢
Cc3 = cosf

B N,
[ N3
s
W Il

M
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Outline

G Conclusion
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@ Teleparallel gravity:
o Fields are tetrad and flat spin connection.
o Only torsion, no curvature or non-metricity.
o Most general theory needs 3 parameters at linearized level.
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@ Teleparallel gravity:

o Fields are tetrad and flat spin connection.

o Only torsion, no curvature or non-metricity.

o Most general theory needs 3 parameters at linearized level.
@ Symmetric teleparallel gravity:

o Fields are metric and flat, symmetric affine connection.

@ Only non-metricity, no curvature or torsion.

o Most general theory needs 5 parameters at linearized level.
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@ Teleparallel gravity:

o Fields are tetrad and flat spin connection.

o Only torsion, no curvature or non-metricity.

o Most general theory needs 3 parameters at linearized level.
@ Symmetric teleparallel gravity:

o Fields are metric and flat, symmetric affine connection.

@ Only non-metricity, no curvature or torsion.

o Most general theory needs 5 parameters at linearized level.
@ Results:

o Gravitational waves propagate at the speed of light.
e Polarisation classes Ny, N3, llls, llg: tensor + maybe more.
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