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Motivation

Open questions in cosmology and gravity:
Accelerating phases in the history of the Universe?
Relation between gravity and gauge theories?
How to quantize gravity?

Teleparallel gravity [Møller ’61]:
Based on tetrad and flat spin connection.
Describes gravity as gauge theory of the translation group.
First order action, second order field equations.
Spin connection as Lorentz gauge degree of freedom.

Symmetric teleparallel gravity [Nester, Yo ’99]

Based on metric and flat, symmetric connection.
Describes gravity as non-metricity of the connection.
First order action, second order field equations.
Contains diffeomorphisms as gauge group.

Gravity formulated as gauge theories.
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Principal symbol of a linear PDE

Consider linear partial differential equation (PDE) system:

DA
BΨB(x) = 0 .

N equations labeled by A = 1, . . . ,N.
N fields ΨB labeled by B = 1, . . . ,N.
Fields depend on spacetime point x .
m-th order partial differential operator with respect to x .

Structure of the linear partial differential operator:

DA
B = MA

B(x) + MA
B
µ1(x)∂µ1 + . . .+ MA

B
µ1···µm (x)∂µ1 · · · ∂µm .

Coefficients in general depend on spacetime point.
Partial derivatives ∂µ with respect to spacetime coordinates.

Consider plane wave ansatz ΨA(x) = Ψ̂Aeikµxµ
for the field:

DA
BΨB(x) =

(
MA

B(x) + . . .+ ipMA
B
µ1···µm (x)kµ1 · · · kµm

)
Ψ̂Aeikµxµ

.

Principal symbol is the highest order term in wave covector kµ:

PA
B(x , k) = MA

B
µ1···µm (x)kµ1 · · · kµm .
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Principal polynomial and propagation speed

Principal polynomial:

p(x , k) = det PA
B(x , k) .

PDE of order p is called strictly hyperbolic if there exists a
covector k̃µ such that for all non-zero covectors kµ the polynomial
p(x , k + t k̃) in t has m distinct real roots.
Hyperbolic PDE has well-defined initial value problem:

Foliation of spacetime by spacelike hypersurfaces with covector k̃µ.
Initial data on chosen hypersurface t = 0.
Non-vanishing initial data only on compact subset.
PDE determines propagation of initial data over time.
Wave front: outer shell of non-vanishing propagating field.

PDE theory: covectors kµ of wave front satisfy p(x , k) = 0.
⇒ Propagation speed determined by zeros of principal polynomial.
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Principal symbol for theories with gauge freedom

Gauge theories lead to p(x , k) ≡ 0 for all kµ!

⇔ There exist directions Ψ̂A with PA
B(x , k)Ψ̂B ≡ 0 for all k .

Gauge degrees of freedom.
No propagation - not physical modes.

⇔ Endomorphism PA
B(x , k) has non-trivial kernel.

Block decomposition of principal symbol:

PA
B(x , k) =

(
P̄A

B(x , k) 0
0 0

)

Gauge degrees of freedom.
Physical degrees of freedom.

Non-trivial restricted principal polynomial: p̄(x , k) = det P̄A
B(x , k).

Covectors kµ of physical wave front satisfy p̄(x , k) = 0.
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Newman-Penrose formalism

Complex double null basis of the tangent bundle:

l = ∂t + ∂z , n =
∂t − ∂z

2
, m =

∂x + i∂y√
2

, m̄ =
∂x − i∂y√

2
.

Consider plane null wave with kµ = −ωlµ and u = t − z:

hµν = ĥµνeikµxµ
= ĥµνeiωu.

Effect of the wave on test particles - geodesic deviation:

vρ∇ρ (vσ∇σsµ) = −Rµ
ρνσvρvσsν .

Riemann tensor determined by “electric” components:

Ψ2 = −1
6

Rnlnl =
1

12
ḧll , Ψ3 = −1

2
Rnlnm̄ =

1
4

ḧlm̄ ,

Ψ4 = −Rnm̄nm̄ =
1
2

ḧm̄m̄ , Φ22 = −Rnmnm̄ =
1
2

ḧmm̄ .
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= ĥµνeiωu.

Effect of the wave on test particles - geodesic deviation:

vρ∇ρ (vσ∇σsµ) = −Rµ
ρνσvρvσsν .

Riemann tensor determined by “electric” components:

Ψ2 = −1
6

Rnlnl =
1

12
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ḧmm̄ .

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 11 / 29



Polarisations of gravitational waves

Effect of the different polarizations on spherical shell of test masses:

Ψ4, Ψ̄4

tensors

Φ22

breathing

Ψ3, Ψ̄3

vectors

Ψ2

longitudinal
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E(2) classification of gravitational waves

Consider Lorentz transformation which fixes wave covector kµ:
Rotations around wave covector & null rotations (= boost + rotation).
Set of transformations isomorphic to Euclidean group E(2).

Transformation of NP components under basis transformation:

Ψ2

��~~ !!
Ψ4 Ψ3oo // Φ22

Possible sets of non-vanishing NP components:

II6: 6 polarizations, all modes are allowed.
III5: 5 polarizations, Ψ2 = 0, no longitudinal mode.
N3: 3 polarizations, Ψ2 = Ψ3 = 0, only tensor and breathing modes.
N2: 2 polarizations, Ψ2 = Ψ3 = Φ22 = 0, only tensor modes.
O1: 1 polarization, Ψ2 = Ψ3 = Ψ4 = 0, only breathing mode.
O0: no gravitational waves.
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Field content and geometry

Fundamental fields in the gravity sector:
Metric gµν .

Flat, symmetric affine connection
×
Γµ

νρ.

Derived quantities:
Volume form

√
− det gd4x .

Levi-Civita connection
◦
Γρ

µν =
1
2

gρσ(∂µgσν + ∂νgµσ − ∂σgµν) .

Non-metricity Qρµν =
×
∇ρgµν .

Gauge fixing
Perform local coordinate transformation:

g′µν =
∂xα

∂x ′µ
∂xβ

∂x ′ν
gαβ ,

×
Γ′ρµν =

∂xα

∂x ′µ
∂xβ

∂x ′ν
∂x ′ρ

∂xγ

×
Γγ

αβ+
∂2xα

∂x ′µ∂x ′ν
∂x ′ρ

∂xα
.

⇒ Coincident gauge: set
×
Γρ

µν ≡ 0⇒ Qρµν = ∂ρgµν .
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Most general action and corresponding field equations

Most general action:

S = −
∫

d4x
√
−g
2

[
c1Qα

µν + c2Q(µ
α
ν)

+ c3Qαgµν + c4δ
α
(µQ̃ν) +

c5

2

(
Q̃αgµν + δα(µQν)

)]
Qα

µν .

Consider linear perturbation of the metric:

gµν = ηµν + hµν .

Linearized vacuum field equations:

0 = 2c1η
ασ∂α∂σhµν + c2η

ασ (∂α∂µhσν + ∂α∂νhσµ)

+ 2c3ηµνη
τωηασ∂α∂σhτω + c4η

ωσ(∂µ∂ωhνσ + ∂ν∂ωhµσ)

+ c5ηµνη
ωγηασ∂α∂ωhσγ + c5η

ωσ∂µ∂νhωσ .
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Principal polynomial and speed of propagation

Decomposition of amplitude ĥλρ in irreducible components:

ĥλρ = Sλρ+2k(λVρ) +
1
3

(
ηλρ −

kλkρ
ηµνkµν

)
T +

(
kλkρ −

1
4
ηλρη

αβkαkβ

)
U .

Conditions imposed on irreducible components:

ηλρSλρ = 0 , kλSλρ = 0 , kρVρ = 0 .

Decomposed field equations:

0 = (2c3 + c5)(ηαβkαkβ)2T +
3
4

[c5 + 2(c1 + c2 + c4)](ηαβkαkβ)3U ,

0 = (2c1 + 8c3 + c5)(ηαβkαkβ)T +
3
2

(2c5 + c2 + c4)(ηαβkαkβ)2U ,

0 = (2c1 + c2 + c4)(ηαβkαkβ)2Vν ,

0 = 2c1η
αβkαkβSµν .

Principal polynomial p(x , k) = const. · (ηαβkαkβ)15.
ηαβkαkβ = 0⇔ propagation at the speed of light.
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Decomposition of amplitude ĥλρ in irreducible components:
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Newman-Penrose formalism

Assume plane null wave hµν = ĥµνeikµxµ
with ηαβkαkβ = 0.

⇒ Terms involving c1 and c3 do not contribute for �hµν = 0.
⇒ Field equations expressed in Newman-Penrose basis:

0 = Enn = −(c2 + c4 + c5)ḧln + c5ḧmm̄ ,

0 = Emn = Enm = −(c2 + c4)ḧlm ,

0 = Emm̄ = Em̄m = c5ḧll ,

0 = Enl = Eln = −(c2 + c4)ḧll .

Possible E(2) classes:

c2 + c4 = c5 = 0: all six modes are allowed⇒ II6.
c2 + c4 = 0, c5 6= 0: only scalar Ψ2 ∼ ḧll prohibited⇒ III5.
c2 + c4 6= 0, c2 + c4 + c5 6= 0: also vector Ψ3 ∼ ḧlm prohibited⇒ N3.
c2 + c4 + c5 = 0, c5 6= 0: also scalar Φ22 ∼ ḧmm̄ prohibited⇒ N2.
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0 = Emm̄ = Em̄m = c5ḧll ,
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c2 + c4 6= 0, c2 + c4 + c5 6= 0: also vector Ψ3 ∼ ḧlm prohibited⇒ N3.
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Gravitational wave polarisations

c2 = sin θ cosφ

c4 = sin θ sinφ

c5 = cos θ
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Outline

1 Introduction

2 Principal symbol: speed of gravitational waves

3 Newman-Penrose formalism: polarization of gravitational waves

4 Waves in non-metricity teleparallel gravity

5 Waves in torsion teleparallel gravity
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Field content and geometry

Fundamental fields in the gravity sector:
Coframe field θa = θa

µdxµ.
Flat spin connection

•
ωa

b =
•
ωa

bµdxµ.

Derived quantities:
Frame field ea = ea

µ∂µ with ιeaθ
b = δb

a .
Metric gµν = ηabθ

a
µθ

b
ν .

Volume form θd4x = θ0 ∧ θ1 ∧ θ2 ∧ θ3.
Levi-Civita connection

◦
ωab = −1

2
(ιeb ιec dθa + ιec ιeadθb − ιeaιeb dθc)θc .

Torsion T a = dθa +
•
ωa

b ∧ θb.
Gauge fixing

Perform local Lorentz transformation:

θ′a = Λa
bθ

b ,
•
ω′ab = Λa

c
•
ωc

d Λb
d + Λa

cdΛb
c .

⇒ Weitzenböck gauge: set
•
ωa

b ≡ 0.
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Most general action and corresponding field equations

Most general action:

S =
1

2κ2

∫
d4x e (c1TµνρTµνρ + c2TµνρTρνµ + c3Tµ

µρTννρ) .

Linear perturbation:

θa
µ = ∆a

µ + ∆a
ρη
ρστσµ .

Linearized vacuum field equations:

∂σ (Fµρσ + Bµρσ) = 0 .

Symmetric perturbation part, φµν = τ(µν) = 1
2 hµν :

Fµρσ = (2c1 + c2) (∂σφµρ − ∂ρφµσ)

+ c3 [(∂σφαα − ∂αφασ)ηµρ − (∂ρφαα − ∂αφαρ)ηµσ] .

Antisymmetric perturbation part, aµν = τ[µν]:

Bµρσ = (2c1 − c2) (∂σaµρ − ∂ρaµσ) + (2c2 + c3)∂µaσρ .
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Principal polynomial and speed of propagation

Decomposition of amplitude τ̂λρ relative to wave vector:

τ̂βσ = kβkσU + Vβkσ + kβWσ + Qβσ .

Conditions imposed on projected components:

kαVα = 0 , kαWα = 0 , kαQα
β = 0 , kαQβ

α = 0 .

⇒ U and Vα cancel in field equations - pure gauge fields.
Write Qαβ in trace, symmetric traceless and antisymmetric part:

Qτκ = Sτκ + Aτκ +
1
3

(
ητκ − kτkκ

ηµνkµkν

)
Qσ

σ .

Decomposed field equations:

0 = (2c1 + c2 + c3)(ηαβkαkβ)2W κ , 0 = (2c1 − c2)ηαβkαkβAτκ ,

0 = (2c1 + c2 + 3c3)ηαβkαkβQτ
τ , 0 = (2c1 + c2)ηαβkαkβSτκ .

Principal polynomial p̄(x , k) = const. · (ηαβkαkβ)15.
ηαβkαkβ = 0⇔ propagation at the speed of light.
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Newman-Penrose formalism

Assume plane null wave τµν = τ̂µνeikµxµ
with ηαβkαkβ = 0.

⇒ Field equations expressed in Newman-Penrose basis:

0 = Enn = (2c1 + c2 + c3)φ̈nl + 2c3φ̈mm̄ + (2c1 + c2 + c3)änl ,

0 = Emn = (2c1 + c2)φ̈ml + (2c1 − c2)äml ,

0 = Enm = −c3φ̈lm − (2c2 + c3)älm ,

0 = Emm̄ = −c3φ̈ll ,

0 = Eln = (2c1 + c2)φ̈ll , .

Possible E(2) classes:

2c1 + c2 = c3 = 0: all six modes are allowed⇒ II6.
2c1(c2 + c3) + c2

2 = 0, 2c1 + c2 + c3 6= 0: only scalar Ψ2 ∼ ḧll = 0
⇒ III5.
2c1(c2 + c3) + c2

2 6= 0, 2c1 + c2 + c3 6= 0: also vector Ψ3 ∼ ḧlm = 0
⇒ N3.
2c1 + c2 + c3 = 0, c3 6= 0: also scalar Φ22 ∼ ḧmm̄ = 0⇒ N2.
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⇒ III5.
2c1(c2 + c3) + c2

2 6= 0, 2c1 + c2 + c3 6= 0: also vector Ψ3 ∼ ḧlm = 0
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Gravitational wave polarisations

c1 = sin θ cosφ

c2 = sin θ sinφ

c3 = cos θ

N2

N3

III5
II6

0

π

6

π

3

π

2

2π

3

5π

6

π

7π

6

4π

3

3π

2

5π

3

11π

6

0

π

8

π

4

3π

8

π

2

0

π

6

π

3

π

2

2π

3

5π

6

π

7π

6

4π

3

3π

2

5π

3

11π

6

0

π

8

π

4

3π

8

π

2

0

π

6

π

3

π

2

2π

3

5π

6

π

7π

6

4π

3

3π

2

5π

3

11π

6

0

π

8

π

4

3π

8

π

2

0

π

6

π

3

π

2

2π

3

5π

6

π

7π

6

4π

3

3π

2

5π

3

11π

6

0

π

8

π

4

3π

8

π

2

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 25 / 29



Outline

1 Introduction

2 Principal symbol: speed of gravitational waves

3 Newman-Penrose formalism: polarization of gravitational waves

4 Waves in non-metricity teleparallel gravity

5 Waves in torsion teleparallel gravity
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Summary

Teleparallel gravity:
Fields are tetrad and flat spin connection.
Only torsion, no curvature or non-metricity.
Most general theory needs 3 parameters at linearized level.

Symmetric teleparallel gravity:
Fields are metric and flat, symmetric affine connection.
Only non-metricity, no curvature or torsion.
Most general theory needs 5 parameters at linearized level.

Results:
Gravitational waves propagate at the speed of light.
Polarisation classes N2, N3, III5, II6: tensor + maybe more.
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