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Why study disformal transformations in scalar-torsion gravity?

@ Brief overview of scalar-torsion theories of gravity:

o Teleparallel dark energy (ceng'11]
Conformally coupled scalar fields malu, Faria 11] [Bamba, Odintsov, Saez-Gomez '13] [Wright '16]
Coupling to teleparallel boundary term [sahamonde, Wright '15] [Bahamonde, Marciu, Rudra '18]
Covariant formulation of scalar-torsion gravity H, Jarv, Ualiknanova 18]
Most general scalar-torsion gravity and conformal transformations v+ 1s
Non-minimally coupled L(T, X, Y, ¢) class of theories H, preiter 18]
Analogue and extension of classical scalar-curvature gravity p+ 1s)
Teleparallel Horndeski gravity [Bahamonde, Dialektopoulos, Said '19]

Manuel Hohmann (University of Tartu) Disformal transformations in scalar-torsion gravity GeomGrav - 17. 6. 2019



Why study disformal transformations in scalar-torsion gravity?
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Most general scalar-torsion gravity and conformal transformations v+ 1s
Non-minimally coupled L(T, X, Y, ¢) class of theories H, preiter 18]
Analogue and extension of classical scalar-curvature gravity p+ 1s)
Teleparallel Horndeski gravity [Bahamonde, Dialektopoulos, Said '19]

@ Lessons to learn from scalar-curvature and Horndeski gravity theories:

Conformal frame freedom in scalar-curvature gravity [Fianagan ‘04

Invariant formulation of scalar-curvature gravity par, kuusk, saal, viison '14]

Invariance of Horndeski gravity under special disformal transformations (getion, Liberaii 13]
Disformal transformations and beyond Horndeski theories (zumalacarregui, Garcia-Beliido '13]
Disformal and extended disformal transformations (ezquiaga, Garcia-Belido, zZumalacarregui 7]
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Why study disformal transformations in scalar-torsion gravity?

@ Brief overview of scalar-torsion theories of gravity:

Teleparallel dark energy (ceng11]

Conformally coupled scalar fields malu, Faria 11] [Bamba, Odintsov, Saez-Gomez '13] [Wright '16]
Coupling to teleparallel boundary term [sahamonde, Wright '15] [Bahamonde, Marciu, Rudra '18]
Covariant formulation of scalar-torsion gravity pH, Jary, Ualiknanova 18]

Most general scalar-torsion gravity and conformal transformations v+ 1s
Non-minimally coupled L(T, X, Y, ¢) class of theories H, preiter 18]
Analogue and extension of classical scalar-curvature gravity p+ 1s)
Teleparallel Horndeski gravity [Bahamonde, Dialektopoulos, Said '19]

@ Lessons to learn from scalar-curvature and Horndeski gravity theories:

Conformal frame freedom in scalar-curvature gravity [Fianagan ‘04

Invariant formulation of scalar-curvature gravity par, kuusk, saal, viison '14]

Invariance of Horndeski gravity under special disformal transformations (getion, Liberaii 13]
Disformal transformations and beyond Horndeski theories (zumalacarregui, Garcia-Beliido '13]
Disformal and extended disformal transformations (ezquiaga, Garcia-Belido, zZumalacarregui 7]

@ Arising questions:

Classes of scalar-torsion gravity with disformal invariance?

Disformal invariance of teleparallel Horndeski gravity?

Healthy “teleparallel beyond Horndeski” theories via disformal transformations?
Invariant formulation in terms of disformal invariants?
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Ingredients of scalar-torsion gravity

@ Fundamental fields:
o Coframe field 6% = 6% ,dx".
o Flat spin connection w?j, = w®,,dx".
o Scalar field ¢.
o Arbitrary matter fields Y.
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Ingredients of scalar-torsion gravity

@ Fundamental fields:
o Coframe field 6% = 6% ,dx".
o Flat spin connection w?j, = w®,,dx".
o Scalar field ¢.
o Arbitrary matter fields Y.
@ Derived quantities:
o Frame field e, = e,*0,, with e, - 0° = 52,
o Metric g, = nap0%,6°..
o Volume form voly = feancgt® A 0° A 0° A 0% = 0" A 0" A 6% A 6.

o Torsion T2 = D6? = d6? + w?, A 6°.
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Ingredients of scalar-torsion gravity

@ Fundamental fields:
o Coframe field 6% = 6% ,dx".
o Flat spin connection w?j, = w®,,dx".
o Scalar field ¢.
o Arbitrary matter fields X
@ Derived quantities:
o Frame field e, = e,*0,, with e, - 0° = 52,
o Metric g, = nap0%,6°..
o Volume form voly = feancgt® A 0° A 0° A 0% = 0" A 0" A 6% A 6.
o Torsion T2 = D§? = do? + wiy A 6°.
@ Remarks on notations and conventions:
Interior product between vector field v and differential form o: v — o.
Exterior covariant derivative: D.
Lorentz indices are raised and lowered with the Minkowski metric ), = diag(—1,1,1,1).
“Musical” isomorphisms for vector field v and one-form o:

a ab_ v 4 v
ot = (ea—o0)e" =n"e; 0,6,0,=9g" 0,0,,
b

V= (V=006 = napv6°,6° ,dx" = g, v dx" .
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Differential form language for scalar fields

@ Lie derivative with respect to frame vector fields:

Ga=Le,p=6€5— do = eaﬂauqﬁ = d¢= ¢730a‘
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Differential form language for scalar fields

@ Lie derivative with respect to frame vector fields:
$a=Led=62-0dp =600 = dp=¢a0°
@ First and second scalar field derivative one-forms:

a=¢d¢ and 7y=D¢,=d¢ - WaA¢b
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Differential form language for scalar fields

@ Lie derivative with respect to frame vector fields:
$a=Led=62-0dp =600 = dp=¢a0°
@ First and second scalar field derivative one-forms:

a=¢d¢ and 7y=D¢,=d¢ - WaA¢b

@ Scalar field kinetic energy scalar:
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Helpful formulas for scalar field terms

@ Wedge products:

VaAthp=0, andp=0, 1,A0%=0.
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Helpful formulas for scalar field terms

@ Wedge products:
YaAPp=0, PaAndp=0, PaA0%=0.
@ Exterior covariant derivatives:

Dyy=mand¢ and Dmy=0.
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Helpful formulas for scalar field terms

@ Wedge products:
baAPp=0, PaAdp=0, 9,A0%=0.
@ Exterior covariant derivatives:
Dyy=mand¢ and Dmy=0.
@ Exterior derivative of kinetic energy scalar:

dX = DX = —n®°¢..Dép = —¢ a7
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9 Teleparallel disformal transformations
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Definition and transformation of fundamental fields

@ Disformal transformation defined by functions €, ® of scalar field and kinetic term:

0% = €(¢, X)0% + D (o, X)0°.
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Definition and transformation of fundamental fields

@ Disformal transformation defined by functions €, ® of scalar field and kinetic term:
0% = €(¢, X)0° + D (6, X)0°.

@ Transformation of the spin connection:
o Should preserve flatness and antisymmetry of the spin connection.
= Can always be absorbed into local Lorentz transformation.
— Keep spin connection unchanged: &%, = w?.
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Definition and transformation of fundamental fields

@ Disformal transformation defined by functions €, ® of scalar field and kinetic term:
0% = €(¢, X)0° + D (6, X)0°.

@ Transformation of the spin connection:
o Should preserve flatness and antisymmetry of the spin connection.
= Can always be absorbed into local Lorentz transformation.
— Keep spin connection unchanged: &%, = w?.
@ Bonus: scalar field redefinition:

¢ = f(¢).
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Definition and transformation of fundamental fields

@ Disformal transformation defined by functions €, ® of scalar field and kinetic term:
0% = €(¢, X)0° + D (6, X)0°.

@ Transformation of the spin connection:

o Should preserve flatness and antisymmetry of the spin connection.
= Can always be absorbed into local Lorentz transformation.
— Keep spin connection unchanged: &%, = w?.

@ Bonus: scalar field redefinition:

¢ = f(¢).

@ Matter fields are kept unchanged: >'<' = X'.
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Transformation of teleparallel geometry

@ Frame vector fields:

_ 1 D Y _ 1 (b D be
€a= g (ea - m¢a) =7 (5a ~ T —oxp Pad.el )eb-
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Transformation of teleparallel geometry

@ Frame vector fields:

_ 1 D Y _ 1 (b D be
€a= g (ea - m¢a) =7 (5a ~ T —oxp Pad.el )eb-

@ Metric:
G=0¢%g+29(¢ - XD)do ® dob.
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Transformation of teleparallel geometry

@ Frame vector fields:

_ 1 D Y _ 1 (b D be
€a= g (ea - m¢a) =7 (5a ~ T —oxp Pad.el )eb-
@ Metric:
G=0¢%g+29(¢ - XD)do ® dob.

@ Volume form:
voly = ¢3(¢ — 2XD)vol, .
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Transformation of teleparallel geometry

@ Frame vector fields:

_ 1 D Y _ 1 (b D be
€a= g (ea - m¢a) =7 (5a ~ T —oxp Pad.el )eb-

@ Metric:
G=0¢%g+29(¢ - XD)do ® dob.

@ Volume form:
volj = ¢3(¢ = 2XD)vol, .

@ Torsion:

TE=CTo+ ¢ 4dp A 0%+ € xdX A 07+ D Adp +D xdX Ay
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Transformation of scalar field terms

@ Lie derivative with respect to frame vector fields:
- f
Pa= goaxple
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Transformation of scalar field terms

@ Lie derivative with respect to frame vector fields:

- f

Pa= goaxple
@ Scalar field kinetic energy scalar:

_ f 2
X:(e—zxg) X
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Transformation of scalar field terms

@ Lie derivative with respect to frame vector fields:

- f

Pa= goaxple
@ Scalar field kinetic energy scalar:

_ f 2
X:(m) X

@ First scalar field derivative one-form:

_ f12
Ya=cooxp Ve
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Transformation of scalar field terms

@ Lie derivative with respect to frame vector fields:

- f

Pa= goaxple
@ Scalar field kinetic energy scalar:

_ f 2
X= (@ — 2xz)) X
@ First scalar field derivative one-form:

_ fIZ
Va=gooxa Ve
@ Second scalar field derivative one-form:

B f f f
Ta = @—2X@”a+(e—zxg)ﬂ”(¢—2xg)x¢’adx'
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e Construction of an invariant action
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General structure of the action

@ Structure of the action: gravity part Sy and matter part S, such that:

8[07 W, ¢7 X] = Sg[67 w, qj)] + Sm[e’ ¢7 X] .

' Assume that test particles follow the geodesics of the Levi-Civita connection. However, other
assumptions are possible.
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General structure of the action

@ Structure of the action: gravity part Sy and matter part S, such that:

8[67 W, ¢7 X] = Sg[97 w, qj)] + Sm[e’ ¢7 X] .

@ Conditions imposed on the matter action:
o Invariance under local Lorentz transformations.
o Form invariance under disformal transformations and scalar field redefinitions.
@ No direct coupling to the spin connection '

' Assume that test particles follow the geodesics of the Levi-Civita connection. However, other
assumptions are possible.
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General structure of the action

@ Structure of the action: gravity part Sy and matter part S, such that:

8[67 W, ¢7 X] = 89[67 w, qj)] + Sm[e’ ¢7 X] .

@ Conditions imposed on the matter action:
o Invariance under local Lorentz transformations.
o Form invariance under disformal transformations and scalar field redefinitions.
o No direct coupling to the spin connection '
@ Conditions imposed on the gravity action:
o Invariance under local Lorentz transformations.
o Form invariance under disformal transformations and scalar field redefinitions.
o Contains scalar quantities constructed from T2,, = e, — g, = T°.
o Is a linear combination of terms Qy, with functions Fx(¢, X) as coefficients.

' Assume that test particles follow the geodesics of the Levi-Civita connection. However, other
assumptions are possible.
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Structure of the matter action

@ Local Lorentz invariance = coupling only to the metric g:

Sm = Sm[g7 o, X] .

= Symmetric energy-momentum tensor.
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Structure of the matter action

@ Local Lorentz invariance = coupling only to the metric g:

Sm = Sm[g7 o, X] .

= Symmetric energy-momentum tensor.
@ Form invariance under disformal transformations and scalar field redefinitions:

Sm = Sul€* Mg + B(4, X)d¢ ® do, x].

= Scalar field equation sourced by energy-momentum tensor.
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Structure of the matter action

@ Local Lorentz invariance = coupling only to the metric g:

Sm = Sm[g7 o, X] .

= Symmetric energy-momentum tensor.
@ Form invariance under disformal transformations and scalar field redefinitions:

Sm = Sul€* Mg + B(4, X)d¢ ® do, x].

= Scalar field equation sourced by energy-momentum tensor.
@ Jordan frame - no direct coupling between matter and scalar field: « = g = 0.
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Torsion component T2, and its transformation

@ Consider the torsion and its components in the tetrad basis:

1 1
AZ=T2 A%, =T .=e,—e,— T2,
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Torsion component T2, and its transformation

@ Consider the torsion and its components in the tetrad basis:
AP =T A =T =e~ep~ T

@ Apply disformal transformation:

7
1 — - S / J
Al =8By~ AT =y M (6, X)A .
J=1

Manuel Hohmann (University of Tartu) Disformal transformations in scalar-torsion gravity GeomGrav - 17. 6. 2019



Torsion component T2, and its transformation

@ Consider the torsion and its components in the tetrad basis:
AP =T A =T =e~ep~ T

@ Apply disformal transformation:
7
5 Y / J
A =8By~ AT=y M (6, X)A .
J=1

@ Newly appearing terms:
2 d 3 4
A = 2T (b p1bd, A be =20 p0e, A b =2X[ple,
d 6 7 d
A% = 207 X pb 10,0, Ao = 20 [cep =17, A%he =21 °6.aX 60 1604 -
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Torsion component T2, and its transformation

@ Consider the torsion and its components in the tetrad basis:
AP =T A =T =e~ep~ T

@ Apply disformal transformation:
7
5 Y ! J
AP =8By~ AT=) M (6. X)A .
J=1

@ Newly appearing terms:
2 d 3 4
A = 2T (b p1bd, A be =20 p0e, A b =2X[ple,
5 d 6 7 d
Al =20 X 10,0, A be =206 =77, A =207 0 gX e pe] -
@ Coefficients in the transformation (with € = € — 2XD):

1 1 D 1 € 1 , , ,
M1=E’ @,M3=—¢ My=—" Msg=———""— M7;=-——".

1 1
Me¢=-M,= e’
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Transformation of resulting terms

@ Define the functions (abbreviations):

’ " f(¢,—2XD
§ = C+2XD - 2XC x + 4X°D ., es=(f) f (€ ,¢).

¢ ¢= €-2XD  (¢-2XD)?

)
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Transformation of resulting terms

@ Define the functions (abbreviations):

’ " f(¢,—2XD
§ = C+2XD - 2XC x + 4X°D ., 95=<f) f (€ ,qs).

¢ ¢= C-2XD  (¢-2XD)?

)

o Coefficients in the transformation of A%%,,, ..., A %p.:

12 12 12 12
2Xfe fF(2D - € x +2XD 2Xf
M22 = f_s’ M. = 20 = B - ( X X) Y D

3 = Q:QES 9 5 @@3 bl 6 — — @@3 9
fee f f’4 (¢ x —2XD 2
M, =—X MPy=2, M= _f Y Y . X, A
¢es ¢ ce e ¢
. 2XF'® PR 4 205 . axX%Pe N
M = o M= M= M =- M=
37 g2 7 el [ 8 ¢4 T b
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Transformation of resulting terms

@ Define the functions (abbreviations):

’ " f(¢,—2XD
§ = C+2XD - 2XC x + 4X°D ., 95=<f) f (€ ,qs).

¢ ¢= C-2XD  (¢-2XD)?

)

o Coefficients in the transformation of A%%,,, ..., A %p.:

12 12 12 12
2Xfe fF(2D - € x +2XD 2Xf
M22 = f_s’ M. = 20 = B - ( X X) Y D

3 = Q:QES 9 5 Q@S bl 6 — — Qes 9
fee f f’4 (¢ x —2XD 2
M, =—X MPy=2, M= _f Y Y . X, A
¢es ¢ ce e ¢
. 2XF'® PR 4 205 . axX%Pe N
M = o M= M= M =- M=
37 g2 7 el [ 8 ¢4 T b

= Transformation reproduces terms A N ,A7abC with coefficients M’J(qs, X).
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Disformally invariant gravitational action

@ Consider action which is polynomial in building blocks:

o 7 7
b BN Gy -CN 11 a4 Inan
Sa= [ vl Y Y e (6, X)A ™ gy ANy
M N=0 ly=1  Iy=1

Manuel Hohmann (University of Tartu) Disformal transformations in scalar-torsion gravity GeomGrav - 17. 6. 2019 17/24



Disformally invariant gravitational action

@ Consider action which is polynomial in building blocks:

[e0]

7 7
b «-bNCyeeeCN hay Inan
Sg = J VOI Z Z Z SNNEIRE (¢7 X)A bicy A bney -
=1 N=1

@ Behavior under disformal transformation:

by--bycicen s T v AM @ Alvan
/1...[Na1...aN (¢7 X)A b1C1 “'A bNCN N

||M\l
ZuM\'
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Disformally invariant gravitational action

@ Consider action which is polynomial in building blocks:

[e0]

7 7
by---byCy---Cn hay Inan
Sg =J VOI Z Z Z l1-+-Iyaq---an (¢7X)A b1C1"'A bNCN‘
=1 In=1

@ Behavior under disformal transformation:

o 7 7
_ — b1"‘bNC1"‘CN - = —I1a1 _INaN
Sg B JMVOIG Z Z Z ly---Inay---an (¢;X)A b1C1"'A bnen -

@ Relation between parameter functions:

7 7
by---byc b <e-bNCy-CN g IN
H[1...[Na1...aN NET @ (€ 2X© Z Z JNa1 N& M /1"°M
Ji=1 =1

In -+
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e The quadratic class of actions
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Lowest order terms in the general action

@ Even number of indices needed to obtain a scalar = N must be even.
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Lowest order terms in the general action

@ Even number of indices needed to obtain a scalar = N must be even.
@ Zeroth order term N = 0: function H(¢, X).
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Lowest order terms in the general action

@ Even number of indices needed to obtain a scalar = N must be even.
@ Zeroth order term N = 0: function H(¢, X).
@ Second order terms defined by free functions U (¢, X), Viy(o, X), Wiy(o, X):

b b ¢ b C; c1 b c,
H/1/231az 1b20102 = U/ 1277313277 1b2770162 + V/1 /26£2117 1][b253$] + Wl1125£1177 1][b25él§] .

1
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Lowest order terms in the general action

@ Even number of indices needed to obtain a scalar = N must be even.
@ Zeroth order term N = 0: function H(¢, X).
@ Second order terms defined by free functions U (¢, X), Viy(o, X), Wiy(o, X):

b b ¢ b C; c1 b c,
H/1/23162 1b20102 = U/ 1277313277 1b2770162 + V/1 /26£2117 1][b25‘a$] + Wl1125£11177 1][b2<sa§] .

1
@ Quadratic disformally invariant class of actions:

7

7
Sg = JMVOIG [H(¢7X) + Z Z H/1/23132b1b26102(¢7 X)Al1a1 b1C1 Al2a2b202
h=1 =1
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Lowest order terms in the general action

@ Even number of indices needed to obtain a scalar = N must be even.
@ Zeroth order term N = 0: function H(¢, X).
@ Second order terms defined by free functions U (¢, X), Viy(o, X), Wiy(o, X):

b b ¢ b C; b c,
H/1 /23162 1b20102 = U/ 1277313277 1b27701 e + V/1 /26£2117 1][b25‘a$] + W/1 /26<[3(1:1n 1][b2<sa§] .

1
@ Quadratic disformally invariant class of actions:

7

7
Sg = JMVOIG [H(¢7X) + Z Z H/1/23132b1b26102(¢7 X)Al1a1 b1C1 Al2a2b202
h=1 =1

@ Explicit form of all linearly independent terms in this action?
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Terms in the quadratic class of actions

@ Terms quadratic in the torsion only:

Q1 = Tabc TabCa Q2 = Tabc cha7 03 = Taac 7-bbc-

Manuel Hohmann (University of Tartu) Disformal transformations in scalar-torsion gravity GeomGrav - 17. 6. 2019 20/24



Terms in the quadratic class of actions

@ Terms quadratic in the torsion only:
Q= T T, Q=T Tpa, Qo=T%Tp".
@ Terms quadratic in the torsion which contain the scalar field:
Q=TT 60000, Q=T Tstatp, Qo=T"Tog 0a60,
Q= TCdaTdcb¢,a¢,ba Qg = TCdaTbcd¢,a¢,ba Qo = T Tbcd¢,a¢,b-
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Terms in the quadratic class of actions

@ Terms quadratic in the torsion only:

Q1 = Tabc TabCa QZ = Tabc cha7 Q3 = Taac 7-bbc-
@ Terms quadratic in the torsion which contain the scalar field:

be -~cd be —d d b
Qi =TT ¢ abpdcda, Q=T T'adadp, Q=T "Teqg ¢adp,
da +b d b
Q7 = TCdaTdcb¢,a¢,b; QS = TC aT cd¢,a¢,b; QQ = Tac T cd¢,a¢,b-
@ Terms linear in the torsion:
Qo =T 0p, Quit=T e=mbs, Quz=Ta"Xp, Qiz=T"¢0pXc.
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Terms in the quadratic class of actions

@ Terms quadratic in the torsion only:

Q= Tabc Tabe, Qo= Tabc Teba, Qs = Taac 7-bbc-
@ Terms quadratic in the torsion which contain the scalar field:

da b
Q=TT abpbcba, Qs =TT 0ba0b, Qo=T " Tea’datp,
b da b d b
Q7 = TCdaTdc ¢,a¢,b; QS = TC aT cd¢,a¢,b; QQ = Tac T cd¢,a¢,b-
@ Terms linear in the torsion:
Qo =TaP0p, Q=T ea=mpbo, Quza=Ta"Xp, Quz=T"pa0pXc.

@ Terms involving the scalar field only:

Qua = X X%, Qs = X0, Qs = (ea=7")(ep =77, Qi7=e,=7".
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Terms in the quadratic class of actions

@ Terms quadratic in the torsion only:
Q= Tabc Tape, Qo= Tabc Teba, Q= Taac 7-bbc-
@ Terms quadratic in the torsion which contain the scalar field:
da+ b
04 = TabeTCde¢,a¢,b¢,c¢,d7 05 = TabCTddc¢,a¢,ba QG = TC aTcd ¢,a¢,b7
da+ b da b d b
Q7 = TC aTdc ¢,a¢,b; QS = TC aT cd¢,a¢,b; QQ = Tac T cd¢,a¢,b-
@ Terms linear in the torsion:
Qo= To%0p, Qu=T"es~mpbe, Quz=Ts"Xp, Qiz=T"%a0Xc.
@ Terms involving the scalar field only:
Qiz = XaX?, Qis = Xa0®, Qig=(€, 1) (ep=7?), Qiz=es-n".
@ Products of the simple terms:
2 2 2
Qig = Qi5Qi7, Q1o = QioQi7, Qoo = Q1o Q15, Qo1 = Qi7, Qo2 = Qff5, Qoz = Qfp -
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Full form of the at most quadratic action

@ Term Q.3 appears only in certain linear combinations = redefinition of terms:

Qi=Q-2XQs, Q=05+ Qa, Q=0 — Qum,
Qo=Qo+2Qz, Qi1 =Qu+Qxs, Qig= Qe+ Qus.
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Full form of the at most quadratic action

@ Term Q.3 appears only in certain linear combinations = redefinition of terms:

Qi=Q-2XQs, Q=05+ Qa, Q=0 — Qum,
Qo=Qo+2Qz, Qi1 =Qu+Qxs, Qig= Qe+ Qus.

o Introduce zeroth order term Qg = 1.
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Full form of the at most quadratic action

@ Term Q.3 appears only in certain linear combinations = redefinition of terms:

Q1= Q-2XQo3, Qs=Qs+Quz, Q=0 - Qg,
Qo=Qo+2Qz, Qi1 =Qu+Qxs, Qig= Qe+ Qus.

o Introduce zeroth order term Qp = 1.
= Transformation behavior of constructed terms:

o )
Qu =) M6, X)Q.
=0
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Full form of the at most quadratic action

@ Term Q.3 appears only in certain linear combinations = redefinition of terms:

Q1= Q-2XQo3, Qs=Qs+Quz, Q=0 - Qg,
Qo=Qo+2Qz, Qi1 =Qu+Qxs, Qig= Qe+ Qus.

o Introduce zeroth order term Qp = 1.
= Transformation behavior of constructed terms:

_ 22
Qu =) M6, X)Q.
1=0
= General form of the disformally invariant quadratic class of actions:

22
Sg = f volg ) Fi(¢, X)Qx -
M k=0
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Outline

e Conclusion
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@ Properties of the constructed actions:
o Invariance under local Lorentz transformations.
o Form invariance under disformal transformations and scalar field redefinitions.
o No direct coupling between matter spin connection.
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@ Properties of the constructed actions:
o Invariance under local Lorentz transformations.
o Form invariance under disformal transformations and scalar field redefinitions.
o No direct coupling between matter spin connection.
@ Polynomial class of actions:
o Constructed from 7 tensors involving torsion and scalar field.
o Terms are polynomial in these tensors with coefficients ~ f(¢, X).
o May consider arbitrary orders.
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@ Properties of the constructed actions:
o Invariance under local Lorentz transformations.
o Form invariance under disformal transformations and scalar field redefinitions.
o No direct coupling between matter spin connection.
@ Polynomial class of actions:
o Constructed from 7 tensors involving torsion and scalar field.
o Terms are polynomial in these tensors with coefficients ~ f(¢, X).
o May consider arbitrary orders.
@ Quadratic class of actions:
o Consider only polynomial terms of up to quadratic order.
o General action is linear combination of 23 different terms.
o Does not contain equivalent of Horndeski gravity (L5 needs quartic order).
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@ Theories avoiding the appearance of Ostrogradsky ghosts?

Find subclass of theories with second order field equations.

Study invariance under special disformal transformations.

Use general disformal transformations to generate ghost-free higher order theories.
Perform Hamiltonian analysis and study ghosts and degrees of freedom.
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@ Theories avoiding the appearance of Ostrogradsky ghosts?

o Find subclass of theories with second order field equations.
o Study invariance under special disformal transformations.
o Use general disformal transformations to generate ghost-free higher order theories.
o Perform Hamiltonian analysis and study ghosts and degrees of freedom.
@ Phenomenological aspects?
Cosmology - dynamics of FLRW universe and perturbations.
Spherically symmetric solutions - black holes, their shadows and orbits.
Screening mechanisms (Vainshtein etc.) and strong coupling issues.
Post-Newtonian limit and solar system consistency.
Gravitational wave - speed and polarizations.
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@ Theories avoiding the appearance of Ostrogradsky ghosts?

o Find subclass of theories with second order field equations.

o Study invariance under special disformal transformations.

o Use general disformal transformations to generate ghost-free higher order theories.
o Perform Hamiltonian analysis and study ghosts and degrees of freedom.

@ Phenomenological aspects?

Cosmology - dynamics of FLRW universe and perturbations.

o Spherically symmetric solutions - black holes, their shadows and orbits.
o Screening mechanisms (Vainshtein etc.) and strong coupling issues.

o Post-Newtonian limit and solar system consistency.

o Gravitational wave - speed and polarizations.

o Extensions:

o Multiple scalar fields.
o Extended disformal transformations and degenerate higher order theories.

o Arbitrary functions of scalars obtained from contracting terms A'abc.
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@ Theories avoiding the appearance of Ostrogradsky ghosts?

o Find subclass of theories with second order field equations.

o Study invariance under special disformal transformations.

o Use general disformal transformations to generate ghost-free higher order theories.
o Perform Hamiltonian analysis and study ghosts and degrees of freedom.

@ Phenomenological aspects?

Cosmology - dynamics of FLRW universe and perturbations.

o Spherically symmetric solutions - black holes, their shadows and orbits.
o Screening mechanisms (Vainshtein etc.) and strong coupling issues.

o Post-Newtonian limit and solar system consistency.

o Gravitational wave - speed and polarizations.

o Extensions:

o Multiple scalar fields.
o Extended disformal transformations and degenerate higher order theories.

o Arbitrary functions of scalars obtained from contracting terms A'abc.

MH, “Disformal Transformations in Scalar-Torsion Gravity,” arXiv:1905.00451 [gr-qc] |
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