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Motivation

• Open questions in gravity theory:
◦ Accelerating expansion of the universe.
◦ Homogeneity of cosmic microwave background.
◦ Unification with quantum theory and other fundamental forces.

• Potential solutions to these problems:
◦ Modify gravitational dynamics, coupling to matter. . .
◦ Consider more general geometry to describe gravity.

• Metric-affine class of geometries:
◦ Consider metric gµν and connection Γµνρ as independent fields.
◦ Impose relations between gµν and Γµνρ by Lagrange multipliers.
◦ Large range of possible dynamics.
◦ Possible to relate to gauge theory - other forces?
◦ Geometry is special case of Cartan geometry.

• Consider solutions with particular spacetime symmetries:
◦ Field equations greatly simplify after imposing symmetry.

◦ Possible to classify all metric-affine geometries by their symmetries.
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Metric-affine geometries and properties

• Objects defining the geometry:
◦ Pseudo-Riemannian metric gµν .
◦ Affine connection with covariant derivative ∇µ and coefficients Γµνρ.

• Properties of metric-affine geometries:
◦ Curvature:

Rµ
νρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓµωρΓωνσ − ΓµωσΓωνρ .

◦ Torsion:
T ρ

µν = Γρνµ − Γρµν .

◦ Nonmetricity:
Qµνρ = ∇µgνρ .

⇒ 8 types of geometries based on (non-)vanishing of R,T ,Q.
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Decomposition of affine connection

• Affine connection coefficients can be written as:

Γµνρ =
{
µ
νρ

}
+ K µ

νρ + Lµνρ .

• Terms in the decomposition:
◦ Levi-Civita connection coefficients:{

µ
νρ

}
=

1
2

gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) .

◦ Contortion tensor:
K ρ

µν =
1
2

(Tµρν + Tνρµ − T ρ
µν) .

◦ Disformation tensor:
Lρµν =

1
2

(Qρ
µν −Qµν

ρ −Qνµ
ρ) .

⇒ Decomposition is unique if both metric and affine connection are given.
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Brief detour: symmetries in Cartan geometry
• Ingredients of a Cartan geometry:

◦ Lie group G with closed Lie subgroup H ⊂ G⇒ homogeneous space G/H.
◦ Principal H-bundle π : P → M over manifold M.
◦ Cartan connection is Lie algebra valued 1-form A ∈ Ω1(P, g), where:

· For all p ∈ P, Ap : TpP → g is a linear isomorphism.
· A is H-equivariant: (Rh)∗A = Ad(h−1) ◦ A for all h ∈ H.
· A(h̃) = h for all h ∈ h, where h̃ is the fundamental vector field of h.

• Further constraints:
◦ First order: quotient representation of adjoint representations of H on g/h is faithful.
◦ Reductive: Lie algebra of G is direct sum g = h⊕ z of subrepresentations of H.

⇒ Notion of symmetry under generating vector field ξ on M:
◦ P canonically identified with subbundle of frame bundle of M.
◦ Canonical decomposition A = ω + e:

· ω ∈ Ω1(P, h) is affine (Ehresmann) connection.
· e ∈ Ω1(P, z) is tautological (solder) form.

◦ Vector field ξ canonically lifted to vector field Ξ on frame bundle (functorial lift).
◦ Symmetry of Cartan connection defined by lifted vector field Ξ: [MH ’15]

· Lifted vector field Ξ is tangent to P.
· Lie derivative LΞω vanishes (sufficient since LΞe always vanishes).
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Finite and infinitesimal transformations of metric-affine geometry

• Finite spacetime transformation:
◦ Generated by 1-parameter diffeomorphism group ϕt : M → M with x ′ = ϕ(x) and t ∈ R.
◦ Transformations of fundamental geometric objects:

· Metric:

(ϕ∗t g)µν(x) = gτω(x ′)
∂x ′τ

∂xµ
∂x ′ω

∂xν
.

· Connection coefficients:

(ϕ∗t Γ)µνρ(x) = Γστω(x ′)
∂xµ

∂x ′σ
∂x ′τ

∂xν
∂x ′ω

∂xρ
+
∂xµ

∂x ′σ
∂2x ′σ

∂xν∂xρ
.

• Infinitesimal spacetime transformation:
◦ Generated by vector field ξ on M.
◦ Lie derivatives of fundamental geometric objects are tensor fields:

· Metric:
(Lξg)µν = ξρ∂ρgµν + ∂µξ

ρgρν + ∂νξ
ρgµρ .

· Connection coefficients:
(LξΓ)µνρ = ξσ∂σΓµνρ − ∂σξµΓσνρ + ∂νξ

σΓµσρ + ∂ρξ
σΓµνσ + ∂ν∂ρξ

µ

= ∇ρ∇νξµ − ξσRµ
νρσ −∇ρ(ξσTµνσ) .
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Symmetries and properties of metric-affine geometry

• Definition of symmetry: Lξg = 0 and LξΓ = 0.

• Properties of the Levi-Civita connection:
◦ Symmetric metric: Lξg = 0⇒ Lξ{} = 0.
◦ Converse is not true: Lξ{} = 0 ; Lξg = 0.
◦ Weaker statement holds: Lξ{} = 0⇔ Lξg = c · g.

• Assume symmetric metric-affine geometry: Lξg = 0 and LξΓ = 0.
⇒ Constituents of connection: LξK = 0, LξL = 0 and Lξ{} = 0.
⇒ Tensorial properties: LξT = 0, LξQ = 0 and LξR = 0.
⇒ Covariant derivatives of any tensor field U: Lξ(∇U) = 0.

• Special case: symmetric teleparallel geometry T = 0 and R = 0.
⇒ Connection takes the form Γµνρ = ∂xµ

∂x ′σ
∂2x ′σ

∂xν∂xρ .
⇒ Choose coordinates such that Γµνρ = 0 in open neighborhood.
⇒ Lie derivative simplifies to (LξΓ)µνρ = ∂ρ∂νξ

µ.

⇒ Every vector field linear in coordinates generates symmetry.
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Example: metric-affine cosmological spacetime
• Cosmological metric-affine geometry: 5 + 2 components of connection and metric.

• Metric takes Robertson-Walker form

gtt = −n2 , grr = a2 , gϑϑ = a2r2 , gϕϕ = gϑϑ sin2 ϑ .

• Most general cosmologically symmetric connection:

Γt
tt = ΓC

1 , Γr
tr = Γθ tθ = Γϕtϕ = ΓC

3 , Γr
rt = Γθθt = Γϕϕt = ΓC

4 , Γt
rr =

ΓC
2

1− kr2 ,

Γt
θθ = ΓC

2 r2 , Γt
ϕϕ = ΓC

2 r2 sin2 θ , Γr
ϕθ = −Γr

θϕ = ΓC
5 r2
√

1− kr2 sin θ ,

Γθrϕ = −Γθϕr =
ΓC

5 sin θ√
1− kr2

, Γϕrθ = −Γϕθr = −
ΓC

5√
1− kr2 sin θ

, Γr
rr =

kr
1− kr2 ,

Γθrθ = Γθθr = Γϕrϕ = Γϕϕr =
1
r
, Γϕθϕ = Γϕϕθ = cot θ , Γθϕϕ = − sin θ cos θ ,

Γr
θθ = r(kr2 − 1) , Γr

ϕϕ = r(kr2 − 1) sin2 θ .

• Free parameters n,a, ΓC
1 , . . . , Γ

C
5 are functions of time t .
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θθ = ΓC

2 r2 , Γt
ϕϕ = ΓC

2 r2 sin2 θ , Γr
ϕθ = −Γr

θϕ = ΓC
5 r2
√

1− kr2 sin θ ,

Γθrϕ = −Γθϕr =
ΓC

5 sin θ√
1− kr2

, Γϕrθ = −Γϕθr = −
ΓC

5√
1− kr2 sin θ

, Γr
rr =

kr
1− kr2 ,

Γθrθ = Γθθr = Γϕrϕ = Γϕϕr =
1
r
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Γr
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ϕϕ = r(kr2 − 1) sin2 θ .
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1 , . . . , Γ

C
5 are functions of time t .
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From symmetric geometry to gravity theory

• Gravitational part of the field equations:
◦ Tensorial expression (follows from diffeomorphism invariance).
◦ Composed from gµν ,Rµ

νρσ,Tµ
νρ,Qµνρ and ∇µ.

• Example: fully general teleparallel gravity R = 0 and Q = 0:
◦ Field equations are of the form Eµν = Θµν (right hand side is energy-momentum tensor).
◦ Local Lorentz invariance induces decomposition: E(µν) = Θµν and E[µν] = 0.

• Impose cosmological symmetry (homogeneity and isotropy):
⇒ Most general geometry defined by two free functions of time.
⇒ One free function can be eliminated by time redefinition.
⇒ Remaining free function takes role of scale factor.

⇒ Antisymmetric field equations E[µν] = 0 solved identically.

⇒ Possible to classify teleparallel geometries by symmetry: [MH, Järv, Krššák, Pfeifer ’19]

◦ Express metric and connection through tetrad and (flat) spin connection.
◦ Derive symmetry conditions on tetrad and spin connection.
⇒ Symmetric geometries can be labelled by Lie group homomorphisms Λ : G→ SO(1,3).
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Conclusion

• Summary:
◦ Consider metric-affine geometry in modified gravity.
◦ Study symmetries of metric-affine geometries.
⇒ Simplification of field equations and symmetric solutions.

• Outlook:
◦ Study more general geometries (Cartan, Finsler).
◦ Catalogue of symmetric geometries for gravity theories.

• References:
◦ MH, “Spacetime and observer space symmetries in the language of Cartan geometry”,

J. Math. Phys. 57 (2016) 082502 [arXiv:1505.07809 [math-ph]].
◦ MH, L. Järv, M.Krššák, C. Pfeifer, “Modified teleparallel theories of gravity in symmetric

spacetimes”, arXiv:1901.05472 [gr-qc], to appear in Phys. Rev. D.
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