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Motivation

• Open questions in cosmology and gravity:
◦ Accelerating phases in the history of the Universe - dark energy, inflation?
◦ Relation between gravity, quantum theory and gauge theories?

• Teleparallel gravity:
◦ Based on a different (flat) connection - gravity is not mediated by curvature.
◦ Interaction is mediated by torsion or non-metricity.

• Classes of teleparallel gravity:
◦ Metric teleparallel gravity: only torsion.
◦ Symmetric teleparallel gravity: only nonmetricity.
◦ General teleparallel gravity: torsion and nonmetricity.

• Classes of teleparallel cosmology:
◦ Make use of cosmological symmetry in order to find general geometry.
◦ Modified Friedmann equations for symmetric teleparallel cosmology.
◦ Use method of dynamical systems to study cosmological dynamics.
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Introduction to teleparallel gravity

• Fundamental fields in metric-affine geometry:
◦ Metric tensor gµν :

⋆ Defines length of and angle between tangent vectors.
⋆ Defines length of curves and proper time.
⋆ Defines causality (spacelike and timelike directions).

◦ Connection with coefficients Γµνρ:
⋆ Defines covariant derivative ∇µ of tensor fields.
⋆ Defines parallel transport along arbitrary curves.
⋆ Defines autoparallel curves via parallel transport of tangent vector.

• Three characteristic quantities:
◦ Curvature:

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + ΓµτρΓ

τ
νσ − ΓµτσΓ

τ
νρ . (1)

◦ Torsion:
Tµ

νρ = Γµρν − Γµνρ . (2)

◦ Nonmetricity:
Qµνρ = ∇µgνρ = ∂µgνρ − Γσνµgσρ − Γσρµgνσ . (3)

• Teleparallel gravity: curvature imposed to vanish.
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Decomposition of the connection

• Affine connection can be decomposed:

Γµνρ =
◦
Γµνρ + Mµ

νρ =
◦
Γµνρ + K µ

νρ + Lµ
νρ . (4)

• Parts of the decomposition:
◦ Levi-Civita connection of the metric:

◦
Γµνρ =

1
2

gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) . (5)

◦ Contortion:
Kµ

νρ =
1
2
(Tν

µ
ρ + Tρ

µ
ν − Tµ

νρ) . (6)

◦ Disformation:
Lµ

νρ =
1
2
(Qµ

νρ − Qν
µ
ρ − Qρ

µ
ν) . (7)

⇒ Define distortion:
Mµ

νρ = K µ
νρ + Lµ

νρ . (8)
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The landscape of metric-affine of gravity
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Cosmologically symmetric metric-affine geometry

1. Most general metric with cosmological symmetry:
◦ Metric in space-time split:

gµν = −nµnν + hµν . (9)

◦ Unit normal covector field:
nµdxµ = −N dt . (10)

◦ Spatial metric with curvature parameter k ∈ {−1,0,1}:

hµνdxµ ⊗ dxν = A2
[

dr ⊗ dr
1 − kr2 + r2(dϑ⊗ dϑ+ sin2 ϑdφ⊗ dφ)

]
. (11)

⇒ Metric depends on lapse N(t) and scale factor A(t).

2. Most general affine connection with cosmological symmetry:
◦ Connection characterized by cosmologically symmetric torsion and nonmetricity:

Tµ
νρ =

2
A
(T1hµ

[νnρ] + T2nσε
σµ

νρ) , Qρµν =
2
A
(Q1nρnµnν + 2Q2nρhµν + 2Q3hρ(µnν)) .

(12)

⇒ Connection depends on five free functions T1(t), T2(t),Q1(t),Q2(t),Q3(t).

◦ Functions are further restricted by vanishing curvature, torsion, nonmetricity.
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Structure of the teleparallel gravity action

• General structure of teleparallel gravity action with matter fields ξ:

S[g, Γ, ψ] = Sg[g, Γ] + SL[g, Γ] + Sm[g, Γ, ξ] , (13)

• Lagrange multiplier enforces constraints on the connection:
◦ General teleparallel gravity:

SL =

∫
M

r̃µνρσRµ
νρσd4x , (14)

◦ Metric teleparallel gravity:

SL =

∫
M
(r̃µνρσRµ

νρσ + q̃µνρQµνρ)d4x , (15)

◦ Symmetric teleparallel gravity:

SL =

∫
M
(r̃µνρσRµ

νρσ + t̃µνρTµ
νρ)d4x , (16)
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Energy-momentum-hypermomentum

• Variation of the matter part of the action:

δSm =

∫
M

(
1
2
Θµνδgµν + Hµ

νρδΓµνρ + ΞIδξ
I
)√

−gd4x , (17)

• Matter field equation: ΞI = 0.
• Impose diffeomorphism invariance δX Sm = 0 and matter field equation:

0 =
◦
∇νΘµ

ν + T σ
µν(∇ρHσ

νρ − Mτ
ρτHσ

νρ)

−∇ν(∇ρHµ
νρ − Mτ

ρτHµ
νρ) + Mσ

νσ(∇ρHµ
νρ − Mτ

ρτHµ
νρ) . (18)

• Energy-momentum-hypermomentum with cosmological symmetry:
◦ Energy-momentum tensor with density ρ and pressure p:

Θµν = ρnµnν + phµν . (19)

◦ Hypermomentum with components ϕ, χ, ψ, ω, ζ:

Hρµν = ϕhµρnν + χhνρnµ + ψhµνnρ + ωnµnνnρ − ζnσε
σ
µνρ . (20)

• Barotropic equation of state: linear relation between variables.
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General quadratic class of theories

• General quadratic gravitational action:

Sg = − 1
2κ2

∫
M

[
Mµνρ(k1Mµνρ + k2Mνρµ + k3Mµρν + k4Mρνµ + k5Mνµρ)

+ k6Mρµ
µMρν

ν + k7Mµρ
µMνρ

ν + k8Mµ
µρMν

νρ

+ k9Mµρ
µMν

νρ + k10Mµ
µρMρν

ν + k11Mρµ
µMνρ

ν

]√
−gd4x

= − 1
2κ2

∫
M

(
a1TµνρTµνρ + a2TµνρTρνµ + a3Tµ

µρTν
νρ

+ c1QµνρQµνρ + c2QµνρQρµν + c3Qρµ
µQρν

ν + c4Qµ
µρQν

νρ + c5Qµ
µρQρν

ν

− b1QµνρTρνµ − b2Qρµ
µT ν

νρ − b3Qµ
µρT ν

νρ

)√
−gd4x .

(21)

⇒ Action depends on up to 11 parameters k1...11.
• Parameters further restricted by consistency and phenomenology.
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Cosmological dynamics as dynamical system

• Introduce helper variables to obtain first order ODE system.

• Write matter variables ρ,p, . . . as quadratic in new quantities D,P, . . ..
⇒ Cosmological variables: metric and connection xa and matter y I .
⇒ General structure of cosmological field equations:

◦ Gravitational field equations:

Aa
bẋb + Ba

bcxbxc = Ua
IJy IyJ . (22)

◦ Energy-momentum-hypermomentum conservation:

VI ẏ I + WaIxay I = 0 . (23)

⇒ Equations become quadratic in variables and linear in their time derivatives.
⇒ Unified equation in terms of variable z = (xa, y I):

ż = f (z, z) . (24)
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bẋb + Ba

bcxbxc = Ua
IJy IyJ . (22)

◦ Energy-momentum-hypermomentum conservation:
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Radial and angular dynamics

• Decomposition of variables into angular part (unit vector n) and radial part (length Z ):

z = Zn , Z = ∥z∥ , n =
z
∥z∥

. (25)

⇒ Dynamical equations:
◦ Radial equation:

Ż = Z 2f (n,n) · n . (26)

◦ Angular equation:
ṅ = Z {f (n,n)− [f (n,n) · n]n} . (27)

⇒ Qualitative dynamics (up to positive factor Z ) fully determined by n.
⇒ Determine fixed points as function of n.
• Unit sphere is compact: fixed points always exist.
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Ż = Z 2f (n,n) · n . (26)

◦ Angular equation:
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Ż = Z 2f (n,n) · n . (26)

◦ Angular equation:
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Fixed points and projective fixed points

• Fixed points: ż = 0.
⇒ z = 0 is always a non-hyperbolic fixed point (saddle point).
⇒ If z = z∗ is a fixed point, then all cz∗ with c ∈ R are fixed points.
⇒ z∗ and −z∗ have opposite stability properties (eigenvalues of Jacobian).

• Projective fixed points: ṅ = 0.
⇒ Condition depends only on angular coordinates:

ṅ
Z

= f (n,n)− [f (n,n) · n]n = 0 . (28)

⇒ If n = n⋆ is a projective fixed point, then −n⋆ is a projective fixed point.
⇒ n⋆ and −n⋆ have opposite stability properties.
⇒ Since ṅ = 0, N⋆ = f (n⋆,n⋆) · n⋆ is constant at a projective fixed point.
⇒ Radial dynamics Ż = N⋆Z 2 can be solved at projective fixed point:

Z (t) =
1

N⋆(t0 − t)
. (29)
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⇒ Radial dynamics Ż = N⋆Z 2 can be solved at projective fixed point:

Z (t) =
1

N⋆(t0 − t)
. (29)

Manuel Hohmann (University of Tartu) Projective teleparallel coordinates GeomGrav - 30. June 2025 12 / 13



Conclusion
• Summary:

◦ Consider teleparallel gravity with torsion and / or nonmetricity.

◦ Cosmologically symmetric teleparallel gravity:
⋆ Metric takes familiar Robertson-Walker form.
⋆ Additional functions of time arising from connection.
⋆ Energy-momentum-hypermomentum described by hyperfluid model.

◦ Cosmology of quadratic teleparallel gravity models:
⋆ Possible to write as first-order ODE system.
⋆ Introduce generalized (geometry and matter) variables.

⇒ System becomes quadratic in variables and linear in their time derivatives.
⇒ Split into angular and radial dynamics.

◦ Generic cosmological features:
⋆ Possible to find all fixed points and projective fixed points.
⋆ Stability of fixed points: existence of saddles, attractors, repellers.
⋆ Radial dynamics at fixed points can be integrated.

• Outlook:
◦ Full classification of fixed points, stability, trajectories.
◦ Study properties and dynamics of inflation and dark energy.
◦ Study cosmological perturbations.
◦ Generalization beyond quadratic teleparallel gravity theories.
◦ Possible generalization to Bianchi spacetime models.
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