Physik II und Einführung in die theoretische Physik II Übungsaufgaben

Manuel Hohmann

21. Mai 2012

1. Eine quadratische Leiterschlaufe der Kantenlänge a mit elektrischem Widerstand R liegt in der (x, z)-Ebene in einem homogenen Magnetfeld $\vec{B}(t)$, das gegeben ist durch

$$\vec{B} = \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix}.$$

Der Ring ist um die z-Achse drehbar gelagert.

- (a) Skizzieren Sie den Versuchsaufbau.
- (b) Berechnen Sie den Strom I(t) durch den Ring und das auf den Ring wirkende Drehmoment \vec{M} .
- (c) Wie ändert sich das Ergebnis, wenn sich der Ring mit der Kreisfrequenz Ω um die z-Achse dreht?
- 2. Betrachten Sie einen Transformator, bestehend aus einer Primärspule mit $N_1 = 1000$ Windungen, einer Sekundärspule mit $N_2 = 100$ Windungen und einem Eisenkern ($\mu_r = 5000$) der Querschnittsfläche $A = 6 \text{cm}^2$ und der Länge l = 10 cm. An die Sekundärspule ist ein Ohmscher Verbraucher mit Lastwiderstand $R = 1\Omega$ angeschlossen.
 - (a) Skizzieren Sie den Versuchsaufbau.
 - (b) Nehmen Sie an, dass durch den Verbraucher der Sekundärstrom $I_2(t) = I_0 \cos(\omega t)$ fließt und berechnen Sie
 - die Sekundärspannung $U_2(t)$,
 - die momentane Sekundärleistung $P_2(t)$ sowie deren zeitlichen Mittelwert,
 - den magnetischen Fluss $\Phi(t)$ im Eisenkern,
 - die magnetische Flussdichte B(t) im Eisenkern,
 - die Primärspannung $U_1(t)$,
 - den Primärstrom $I_1(t)$,
 - die momentane Primärleistung $P_1(t)$ sowie deren zeitlichen Mittelwert,
 - die Phasenverschiebung zwischen $I_1(t)$ und $U_1(t)$.
 - (c) Wovon hängen die Wirkleistung und die Blindleistung ab?
 - (d) Wie sollten die Parameter A, l, μ_r eines Transformators gewählt sein, um ein möglichst hohes Verhältnis von Wirkleistung zu Blindleistung zu erhalten?

- 3. Betrachten Sie einen Plattenkondensator mit Plattenfläche A und Plattenabstand d, an dem die Spannung U anliegt.
 - (a) Berechnen Sie die Energiedichte $w = \frac{1}{2}\epsilon_0\epsilon_r\vec{E}^2$ des elektrischen Feldes zwischen den Platten und die gesamte Feldenergie W.
 - (b) Vergleichen Sie das Ergebnis mit der im Kondensator gespeicherten Energie $W = \frac{1}{2}CU^2$.
- 4. Betrachten Sie eine lange Spule der Länge l und der Querschnittsfläche A, die aus N Windungen besteht und mit einem Material der Permeabilität μ_r gefüllt ist. Durch die Spule fließe der Strom I.
 - (a) Nehmen Sie an, dass das Magnetfeld im Inneren der Spule homogen ist, und vernachlässigen Sie das Magnetfeld außerhalb der Spule. Nutzen Sie die Maxwell-Gleichungen in Integralform, um die magnetische Flussdichte \vec{B} im Inneren der Spule zu berechnen.
 - (b) Zeigen Sie, dass zwischen Strom und Spannung der Zusammenhang $U=L\dot{I}$ besteht mit einer Konstanten L und bestimmen Sie L.
 - (c) Der Strom in der Spule wird von 0 auf den Wert I erhöht. Zeigen Sie, dass dabei die Energie $W = \frac{1}{2}LI^2$ in der Spule gespeichert wird.
 - (d) Berechnen Sie die Energiedichte $w=\frac{1}{2\mu_0\mu_r}\vec{B}^2$ des magnetischen Feldes und die gesamte Feldenergie im Inneren der Spule.
 - (e) Vergleichen Sie das Ergebnis mit der in der Spule gespeicherten Energie $W=\frac{1}{2}LI^2$.