Selected Topics in the Theories of Gravity - Assignment 2

Manuel Hohmann

13. February 2014

1. Energy conditions

(a) Prove that the strong energy condition,

9

$$\left(T_{\mu\nu} - \frac{1}{2}Tg_{\mu\nu}\right)\xi^{\mu}\xi^{\nu} \ge 0 \tag{1}$$

for all timelike vectors ξ^{μ} , can be expressed in terms of the eigenvalues of the energy-momentum tensor as

$$\rho + \sum_{i=1}^{3} p_i \ge 0 \quad \text{and} \quad \rho + p_i \ge 0 \,\forall i = 1, 2, 3.$$
(2)

- (b) Prove these statements using the eigenvalues of the energy-momentum tensor:
 - If the dominant energy condition holds, also the weak energy condition holds.
 - If the weak energy condition holds, also the null energy condition holds.
 - If the strong energy condition holds, also the null energy condition holds.
- (c) Show by example that the weak energy condition does not follow from the strong energy condition.

2. Schwarzschild wormhole

Consider the Schwarzschild wormhole, i.e. the wormhole defined by the metric

$$ds^{2} = -e^{2\Phi(r)}dt^{2} + \frac{dr^{2}}{1 - b(r)/r} + r^{2}[d\theta^{2} + \sin^{2}\theta \, d\phi^{2}], \qquad (3)$$

where $b(r) = r_0 = \text{const.}$ and $e^{2\Phi(r)} = 1 - r_0/r$. As in the lecture, the coordinate r has the range $r \ge r_0$ in two copies of flat Minkowski spacetime which are glued together at the throat $r = r_0$.

- (a) Show that the rest energy density ρ , the radial pressure p_r and the lateral pressure p_l (and thus the energy-momentum tensor $T_{\mu\nu}$) vanish. Does this solution satisfy the energy conditions?
- (b) Does this solution satisfy the conditions on a traversable wormhole? Explain your answer.