Selected Topics in the Theories of Gravity - Assignment 5

Manuel Hohmann

10. March 2014

1. Lie bracket of Killing vector fields

Consider two Killing vector fields $\xi = \xi^{\mu} \partial_{\mu}$ and $\xi' = \xi'^{\mu} \partial_{\mu}$.

(a) Calculate the components ζ^{μ} of the Lie bracket $\zeta = [\xi, \xi']$. Recall that the Lie bracket can be defined by its operation on scalar fields ϕ ,

$$[\xi, \xi']\phi = \xi(\xi'\phi) - \xi'(\xi\phi).$$
⁽¹⁾

(b) Show that ζ is also a Killing vector field.

2. Cylindrical symmetry

Consider the metric

$$ds^{2} = -A(\rho)dt^{2} + B(\rho)dz^{2} + C(\rho)(x\,dx + y\,dy)^{2} + D(\rho)(y\,dx - x\,dy)^{2}$$
(2)

with $\rho^2 = x^2 + y^2$ and the diffeomorphisms f_{ϕ,c_t,c_z} given by

$$t' = t + c_t, \quad z' = z + c_z, \quad x' = x \cos \phi + y \sin \phi, \quad y' = -x \sin \phi + y \cos \phi.$$
 (3)

- (a) Show that f_{ϕ,c_t,c_z} is an isometry.
- (b) Find the orbits of this isometry group. What do they look like?
- (c) Determine the Killing vector fields of the 1-parameter subgroups $f_{\phi,0,0}$, $f_{0,c_t,0}$ and $f_{0,0,c_z}$.