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1 Einstein-Hilbert action
The dynamics of general relativity can be derived from an action of the form

Slg, ®] = Sclg] + Smlg, @], (1.1)

where g denotes the Lorentzian metric of spacetime and ® denotes some matter fields.
The terms here are the Einstein-Hilbert action

Sald) = jgrgs [ d'ava(R—20), (1.2)

where R is the Ricci scalar and A is the cosmological constant, and some matter action

Sulg.®) = [ d'ov=5 Lulg. (1.3)

with Lagrange function Ljs[g, ®]. By variation of the total action with respect to the
metric g, we can derive the Einstein equations. We will start with the gravitational part
Sclg], which we write in the form

Salo) = jgrgs [ AoVI (" R~ 20), (1.4)

where R, is the Ricci tensor. The variation of the action then takes the form

1
0Sg = e /d4$ [&/—g (g"" Ry —2M) + /=g (66" Ry + g’“/5RW)} . (1.5)

We now see that we need to calculate the variation of three terms. We start with the
determinant term coming from the volume form. Its variation is given by

1
0/—g = 59’“’5gm,. (1.6)
The variation of the inverse metric takes is given by
8g" = —g""g"7 8o - (1.7)

We finally need to calculate the variation of the Ricci tensor. Here we will use a trick
to simplify the calculation. Recall that the Ricci tensor is a contraction of the Riemann
tensor,

Ry = R v (1.8)



and that the Riemann tensor is given by
Ruupa = 6prul/cr - aaruup + F'upTFTVO' - F“UTFTVp ) (19)

where I'*,,, are the Christoffel symbols. The variation of the Riemann tensor is thus given
by

SR ypy = 80T g — Dy0T 4+ 6T ) Ty +TH 0T Ly — 6T T7 = THy 617, (1.10)

We now use the fact that 0I'*,, is the difference between to connections (the Levi-Civita

connections of g, and g, + 0g,.), and hence is a tensor. Its covariant derivative is given
by
V61t g = 0,01 o + T 007 o — T7 ), 0TF 6 — T7 po 611 (1.11)

One can now easily check that
OR!, e = V01", — VI, (1.12)
For the variation of the Ricci tensor we thus find
R, =V, 017, — V,617,,. (1.13)
Contracted with the inverse metric this yields
9" O R = g"" (Vp0l? =V 0T7) =V, (" 017 1y — g"70TY 1)) (1.14)

where we used the fact that the metric, and thus also its inverse, is covariantly constant,
V,g"*” = 0. The expression we obtain is a total covariant divergence. Its integral

/d4x\/—g V, (g" TP — g"PoT" 1) (1.15)

therefore vanishes. In summary we thus find the variation
§Sq = S /d493\/—g 1gW(R —2A) — R*™ | &g (1.16)
167G 2 . '

In a similar way we can calculate the variation of the matter action (1.3),

1

0Sm = /d4$5; (V=9 L] dgu = 2/d4x\/—79TW59;w’ (1.17)
j0%

where we have introduced the energy-momentum tensor

2 6(y/—gL
T — (V=g Lu) (1.18)
Vo) 5g,uz/
From the condition that §S vanishes for arbitrary variations dg,, we then find, after
lowering the indices with the metric,

1
R, — ing + Agu = 81GT ), . (1.19)

These are the Einstein equations.



2 Covariant energy-momentum conservation

It is well known that the Einstein tensor
1
G#y = R‘uy — §Rg#y (21)

satisfies the Bianchi identity
V,.G" =0. (2.2)

Further, the metric is covariantly constant, V,¢g"” = 0. From the Einstein equations (1.19)
thus follows that also the energy-momentum tensor 7, must be covariantly conserved,

VT =0. (2.3)

There is an elegant and more fundamental way to see this, which follows directly from the
definition (1.18). In order for the matter action (1.3) to have a physical meaning which
is independent of the choice of coordinates, it must be invariant under an infinitesimal
coordinate change of the form

ot ot e (2.4)

where £ is a vector field. This coordinate transformation, or diffeomorphism, induces a
“shift” of tensor fields ® by the amount

OOy Ly = EPDpIT
— (O )DIH = = (DpE )T,
+ (B &) b (0, E)B,

= L@,

(2.5)

which is called the Lie derivative. We can now calculate the change of the matter ac-
tion (1.3) under this diffeomorphism. It takes the form

0(/—g L 0(/—g L
0¢S = /d4l' |:(gM)5§g,ul/+ (V=9 M)(qu) . (2.6)
0w 0P
We first take a look at the second term. Since /—g does not depend on ®, we find
6(v—gLn) 0Ly
which vanishes because of the matter field equations
0Ly
-0. 2.
0P 0 (2:8)

This leaves us with only the first term. Here we need to calculate the Lie derivative

6€g,ul/ = »Cfgw/ = vufu + vufu = 2v(,u£zx) . (29)
Further, recall that by definition (1.18) of the energy-momentum tensor

S=GL) _ VT

0w 2

(2.10)



From this we find

559;11/

5eS = /d45r M)

~ [dtev=g 19,6 (2.11)
—- [ dey=g (7,06,

where the last line follows from integration by parts. This vanishes for arbitrary vector
fields ¢ if and only if V, 7" vanishes identically, i.e., if the covariant energy-momentum
conservation (2.3) holds.

3 Example: Maxwell field

As an example for a matter field we consider the Maxwell field without charges given by
the Lagrange function

1
Ly = _7FMVFMV - _EFHVFPJQMPQVU' (3‘1)

The calculation of the energy-momentum tensor is straightforward:

THY — 2 5( ) LM)
V=4 5guu
1

_ /7 pTT 0T
8%F5guy[ Frrg™ 9 ]

1 6/— 6g°7
= |: -9 pﬂ- UT+\/7< +gpﬂ g ):| FPO'FTI"T (32)

871'\/ ;w 5g;w
11
=% [ g’ g9’ — g g’ g’ — g” g”"g”] Foo Frr

1 1
4 <} g Vagp Zgu }po} po‘) .
Lowering the indices yields

1 1
Ty = P (F Foo 4gqup0F'w> . (3.3)

We finally show by explicit calculation that T}, is covariantly conserved. Also this calcu-

lation is straightforward:

1
47TVMTHV == VM (F“pragpo' - glepanG>

4
1
=V, F'"PF g5 + F'PN  FY 9o — 9" 977 9" (Vo Fpn For + FpreV 1 For) .

4
(3.4)
Here V,F#* vanishes because of the Gauss-Ampére law
V., F* =0. (3.5)



Further, the last two terms can be combined because of the symmetry of ¢?° and ¢"".
From this we get

1
ATV, TH = g'" g7 ¢ FrpN  Frg — §gﬂygpgngp,rV#Fm. (3.6)

In the first term we now exchange the indices u and 7 by renaming. In the second term
we use the antisymmetry of F,;. This yields

1
A7V, TH = g g™ ¢P" FrpNV 1 Fpo + ig“”gp"ngpr”Fm ) (3.7)
This can be rearranged to give
1
47V, TH = ig“”g'wg”pr (VeFuo +ViEe +V,uFyr) | (3.8)

where we wrote the term V,F,, twice to compensate for the factor 1/2 in front of the
whole expression. With one of these two identical terms we then make two transformations.
First, we use the antisymmetry of F},, to exchange the indices y and o, which gives us
a factor —1. We then exchange the indices 7 and o, which gives us another factor —1,
because they are contracted with the antisymmetric Fy, via g and ¢"". Both factors
cancel, so that this finally yields

1
47V, TH = ig‘“’gp"g”Fﬂp (VolFrp +ViEye +V, Fyr) . (3.9)
Now the term in brackets vanishes because of the Gauss-Faraday law
V[pFMV} =0. (3.10)

We thus see that the energy-momentum tensor of the Maxwell field is indeed covariantly
conserved.



