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1 Einstein-Hilbert action

The dynamics of general relativity can be derived from an action of the form

S[g,Φ] = SG[g] + SM [g,Φ] , (1.1)

where g denotes the Lorentzian metric of spacetime and Φ denotes some matter fields.
The terms here are the Einstein-Hilbert action

SG[g] =
1

16πG

∫
d4x
√
−g (R− 2Λ) , (1.2)

where R is the Ricci scalar and Λ is the cosmological constant, and some matter action

SM [g,Φ] =

∫
d4x
√
−g LM [g,Φ] (1.3)

with Lagrange function LM [g,Φ]. By variation of the total action with respect to the
metric gµν we can derive the Einstein equations. We will start with the gravitational part
SG[g], which we write in the form

SG[g] =
1

16πG

∫
d4x
√
−g (gµνRµν − 2Λ) , (1.4)

where Rµν is the Ricci tensor. The variation of the action then takes the form

δSG =
1

16πG

∫
d4x

[
δ
√
−g (gµνRµν − 2Λ) +

√
−g (δgµνRµν + gµνδRµν)

]
. (1.5)

We now see that we need to calculate the variation of three terms. We start with the
determinant term coming from the volume form. Its variation is given by

δ
√
−g =

1

2
gµνδgµν . (1.6)

The variation of the inverse metric takes is given by

δgµν = −gµρgνσδgρσ . (1.7)

We finally need to calculate the variation of the Ricci tensor. Here we will use a trick
to simplify the calculation. Recall that the Ricci tensor is a contraction of the Riemann
tensor,

Rµν = Rρµρν , (1.8)
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and that the Riemann tensor is given by

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓµρτΓτ νσ − ΓµστΓτ νρ , (1.9)

where Γµνρ are the Christoffel symbols. The variation of the Riemann tensor is thus given
by

δRµνρσ = ∂ρδΓ
µ
νσ−∂σδΓµνρ + δΓµρτΓτ νσ + ΓµρτδΓ

τ
νσ− δΓµστΓτ νρ−ΓµστδΓ

τ
νρ . (1.10)

We now use the fact that δΓµνρ is the difference between to connections (the Levi-Civita
connections of gµν and gµν + δgµν), and hence is a tensor. Its covariant derivative is given
by

∇ρδΓµνσ = ∂ρδΓ
µ
νσ + ΓµρτδΓ

τ
νσ − Γτ ρνδΓ

µ
τσ − Γτ ρσδΓ

µ
ντ . (1.11)

One can now easily check that

δRµνρσ = ∇ρδΓµνσ −∇σδΓµνρ . (1.12)

For the variation of the Ricci tensor we thus find

δRµν = ∇ρδΓρµν −∇νδΓρµρ . (1.13)

Contracted with the inverse metric this yields

gµνδRµν = gµν (∇ρδΓρµν −∇νδΓρµρ) = ∇ρ (gµνδΓρµν − gµρδΓνµν) , (1.14)

where we used the fact that the metric, and thus also its inverse, is covariantly constant,
∇ρgµν = 0. The expression we obtain is a total covariant divergence. Its integral∫

d4x
√
−g∇ρ (gµνδΓρµν − gµρδΓνµν) (1.15)

therefore vanishes. In summary we thus find the variation

δSG =
1

16πG

∫
d4x
√
−g
[

1

2
gµν(R− 2Λ)−Rµν

]
δgµν . (1.16)

In a similar way we can calculate the variation of the matter action (1.3),

δSM =

∫
d4x

δ

δgµν

[√
−g LM

]
δgµν =

1

2

∫
d4x
√
−g Tµνδgµν , (1.17)

where we have introduced the energy-momentum tensor

Tµν =
2√
−g

δ(
√
−g LM )

δgµν
. (1.18)

From the condition that δS vanishes for arbitrary variations δgµν we then find, after
lowering the indices with the metric,

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.19)

These are the Einstein equations.
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2 Covariant energy-momentum conservation

It is well known that the Einstein tensor

Gµν = Rµν −
1

2
Rgµν (2.1)

satisfies the Bianchi identity
∇µGµν = 0 . (2.2)

Further, the metric is covariantly constant, ∇ρgµν = 0. From the Einstein equations (1.19)
thus follows that also the energy-momentum tensor Tµν must be covariantly conserved,

∇µTµν = 0 . (2.3)

There is an elegant and more fundamental way to see this, which follows directly from the
definition (1.18). In order for the matter action (1.3) to have a physical meaning which
is independent of the choice of coordinates, it must be invariant under an infinitesimal
coordinate change of the form

xµ 7→ xµ + ξµ , (2.4)

where ξ is a vector field. This coordinate transformation, or diffeomorphism, induces a
“shift” of tensor fields Φ by the amount

δξΦ
µ1...µr

ν1...νs = ξρ∂ρΦ
µ1...µr

ν1...νs

− (∂ρξ
µ1)Φρ...µr

ν1...νs − . . .− (∂ρξ
µr)Φµ1...ρ

ν1...νs

+ (∂ν1ξ
ρ)Φµ1...µr

ρ...νs + . . .+ (∂νsξ
ρ)Φµ1...µr

ν1...ρ

= LξΦµ1...µr
ν1...νs ,

(2.5)

which is called the Lie derivative. We can now calculate the change of the matter ac-
tion (1.3) under this diffeomorphism. It takes the form

δξS =

∫
d4x

[
δ(
√
−g LM )

δgµν
δξgµν +

δ(
√
−g LM )

δΦ
δξΦ

]
. (2.6)

We first take a look at the second term. Since
√
−g does not depend on Φ, we find

δ(
√
−g LM )

δΦ
=
√
−g δLM

δΦ
, (2.7)

which vanishes because of the matter field equations

δLM
δΦ

= 0 . (2.8)

This leaves us with only the first term. Here we need to calculate the Lie derivative

δξgµν = Lξgµν = ∇µξν +∇νξµ = 2∇(µξν) . (2.9)

Further, recall that by definition (1.18) of the energy-momentum tensor

δ(
√
−g LM )

δgµν
=

√
−g
2

Tµν . (2.10)
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From this we find

δξS =

∫
d4x

δ(
√
−g LM )

δgµν
δξgµν

=

∫
d4x
√
−g Tµν∇µξν

= −
∫
d4x
√
−g (∇µTµν)ξν ,

(2.11)

where the last line follows from integration by parts. This vanishes for arbitrary vector
fields ξ if and only if ∇µTµν vanishes identically, i.e., if the covariant energy-momentum
conservation (2.3) holds.

3 Example: Maxwell field

As an example for a matter field we consider the Maxwell field without charges given by
the Lagrange function

LM = − 1

16π
FµνF

µν = − 1

16π
FµνFρσg

µρgνσ . (3.1)

The calculation of the energy-momentum tensor is straightforward:

Tµν =
2√
−g

δ(
√
−g LM )

δgµν

= − 1

8π
√
−g

δ

δgµν

[√
−gFρσFπτgρπgστ

]
= − 1

8π
√
−g

[
δ
√
−g

δgµν
gρπgστ +

√
−g
(
δgρπ

δgµν
gστ + gρπ

δgστ

δgµν

)]
FρσFπτ

= − 1

8π

[
1

2
gµνgρπgστ − gµρgνπgστ − gρπgµσgντ

]
FρσFπτ

=
1

4π

(
FµρF νσgρσ −

1

4
gµνFρσF

ρσ

)
.

(3.2)

Lowering the indices yields

Tµν =
1

4π

(
FµρFνσg

ρσ − 1

4
gµνFρσF

ρσ

)
. (3.3)

We finally show by explicit calculation that Tµν is covariantly conserved. Also this calcu-
lation is straightforward:

4π∇µTµν = ∇µ
(
FµρF νσgρσ −

1

4
gµνFρσF

ρσ

)
= ∇µFµρF νσgρσ + Fµρ∇µF νσgρσ −

1

4
gµνgρσgπτ (∇µFρπFστ + Fρπ∇µFστ ) .

(3.4)

Here ∇µFµρ vanishes because of the Gauss-Ampére law

∇µFµν = 0 . (3.5)
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Further, the last two terms can be combined because of the symmetry of gρσ and gπτ .
From this we get

4π∇µTµν = gµπgντgρσFπρ∇µFτσ −
1

2
gµνgρσgπτFρπ∇µFστ . (3.6)

In the first term we now exchange the indices µ and τ by renaming. In the second term
we use the antisymmetry of Fρπ. This yields

4π∇µTµν = gµνgπτgρσFπρ∇τFµσ +
1

2
gµνgρσgπτFπρ∇µFστ . (3.7)

This can be rearranged to give

4π∇µTµν =
1

2
gµνgρσgπτFπρ (∇τFµσ +∇τFµσ +∇µFστ ) , (3.8)

where we wrote the term ∇τFµσ twice to compensate for the factor 1/2 in front of the
whole expression. With one of these two identical terms we then make two transformations.
First, we use the antisymmetry of Fµσ to exchange the indices µ and σ, which gives us
a factor −1. We then exchange the indices τ and σ, which gives us another factor −1,
because they are contracted with the antisymmetric Fπρ via gρσ and gπτ . Both factors
cancel, so that this finally yields

4π∇µTµν =
1

2
gµνgρσgπτFπρ (∇σFτµ +∇τFµσ +∇µFστ ) . (3.9)

Now the term in brackets vanishes because of the Gauss-Faraday law

∇[ρFµν] = 0 . (3.10)

We thus see that the energy-momentum tensor of the Maxwell field is indeed covariantly
conserved.
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