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1 Energy conditions

There are four different, but related energy conditions which can be imposed on the energy-
momentum tensor [1]. Matter satisfying these conditions is denoted ordinary matter, while
matter violating these conditions is called exotic matter.

1.1 Weak energy condition (WEC)

The weak energy condition states that for any observer the measured energy density is
non-negative. Since the energy density measured by an observer with four-velocity ξµ is
given by Tµνξ

µξν , this means that

Tµνξ
µξν ≥ 0 (1.1)

for all future timelike vectors ξµ.

1.2 Dominant energy condition (DEC)

The dominant energy condition states that in addition to the weak energy condition holding
true, the energy flow that an observer measures is always future-directed and does not
exceed the speed of light. For an observer with four-velocity ξµ the energy flow is given
by its four-current density

jµ = −Tµνξν . (1.2)

The dominant energy condition thus requires that for any future timelike vector ξµ, the
current density must be a future causal (i.e., timelike or lightlike) vector.

1.3 Strong energy condition (SEC)

The strong energy condition has a similar form as the weak energy condition. It requires
that (

Tµν −
1

2
Tgµν

)
ξµξν ≥ 0 (1.3)

for all future timelike vectors ξµ. Via the Einstein equations this expression is related to
the trace of the tidal tensor E[ξ]µν ,

gµνE[ξ]µν = gµνRµρνσξ
ρξσ = Rρσξ

ρξσ . (1.4)

It basically states that any observer measures gravity as an attractive force.

1



1.4 Null energy condition (NEC)

The null energy condition is a limiting case of the weak (or strong) energy condition. It
states that (1.1) (or equivalently (1.3)) holds for any null vector ξµ, i.e., gµνξ

µξν = 0.

1.5 Relation of the energy conditions

The energy conditions given above are not independent of each other. Indeed one can
show that:

• If the dominant energy condition holds, also the weak energy condition holds.

• If the weak energy condition holds, also the null energy condition holds.

• If the strong energy condition holds, also the null energy condition holds.

Note that the weak energy condition does not follow from the strong energy condition.
These relations can be summarized in the following diagram:

DEC

��

SEC

��

WEC

 (
NEC

2 Eigenvalues of the energy-momentum tensor

Using the definitions given above one can easily see that an energy condition is violated
when there exists a vector ξµ which violates the corresponding inequality. However, it is
more difficult to show that an energy condition is satisfied, because one must prove that
no such vector exists. A helpful method is thus to reformulate the energy conditions in
terms of the eigenvalues of the energy-momentum tensor.
An eigenvector ξµ of the energy-momentum tensor with eigenvalue λ is a vector which
satisfies

Tµνξ
ν = λξµ . (2.1)

The eigenvalues of the energy-momentum tensor are those λ for which a non-trivial eigen-
vector ξµ 6= 0 exists. Note that this is only the case when

det(Tµν − λδµν ) = 0 , (2.2)

or equivalently,
det(Tµν − λgµν) = 0 . (2.3)

Since this eigenvalue equation is a fourth order algebraic equation, it has four not nec-
essarily different, possibly complex solutions. The complete classification of eigenvalues
and eigenvectors can be tedious [2]; in the following discussion we restrict ourselves to the
special case that all eigenvalues are real, and there exists one timelike eigenvector ξ0

µ and
three spacelike eigenvectors ξi

µ.
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We can choose a set of eigenvectors which makes calculations a bit simpler. Recall from
linear algebra that eigenvectors belonging to different eigenvalues are always orthogonal
to each other, since Tµν is symmetric,

(λ− λ′)gµνξµξ′ν = gµν
(
Tµσξ

σξ′ν − T νσξµξ′σ
)

= (Tνµ − Tµν)ξµξ′ν = 0 . (2.4)

Further, if two (or more) eigenvalues are the same, we can always choose a set of orthogonal
eigenvectors for these eigenvalues. Finally, we can normalize these eigenvectors using the
metric. In summary, we can always choose the vectors ξα

µ such that they satisfy

gµνξα
µξβ

ν = ηαβ , (2.5)

i.e., they form an orthonormal basis. Using this basis the energy-momentum tensor always
takes the form

Tµν = ρξ0µξ0ν + p1ξ1µξ1ν + p2ξ2µξ2ν + p3ξ3µξ3ν , (2.6)

where ρ is called the rest energy and pi are called the principal pressures. We will now
formulate the energy conditions in terms of these eigenvalues.
We first take a look at the weak energy condition. Any timelike vector ξµ can be written
in the basis ξα

µ as
ξµ = vαξα

µ , (2.7)

where the coefficients vα satisfy

ηαβv
αvβ = −v2 < 0 . (2.8)

For the inequality (1.1) we then find

Tµνξ
µξν = Tµνξα

µξβ
µvαvβ

= ρ(v0)2 + p1(v1)2 + p2(v2)2 + p3(v3)2

= ρ
(
v2 + (v1)2 + (v2)2 + (v3)2

)
+ p1(v1)2 + p2(v2)2 + p3(v3)2

= ρv2 + (ρ+ p1)(v1)2 + (ρ+ p2)(v2)2 + (ρ+ p3)(v3)2

(2.9)

Here v2, (v1)2, (v2)2, (v3)2 are arbitrary positive numbers. The result is thus non-negative
for all timelike vectors if and only if

ρ ≥ 0 and ρ+ pi ≥ 0 ∀i = 1, 2, 3 . (2.10)

This is the weak energy condition in terms of the rest energy density and principal pres-
sures.
One can proceed similarly for the other energy conditions. One finds that the strong energy
condition takes the form

ρ+
3∑
i=1

pi ≥ 0 and ρ+ pi ≥ 0 ∀i = 1, 2, 3 , (2.11)

the dominant energy condition takes the form

ρ ≥ 0 and − ρ ≤ pi ≤ ρ ∀i = 1, 2, 3 , (2.12)

and the null energy condition takes the form

ρ+ pi ≥ 0 ∀i = 1, 2, 3 . (2.13)
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3 Wormholes

Consider the static, spherically symmetric spacetime metric in spherical coordinates (t, l, θ, φ)
given by

ds2 = −e2Φ(l)dt2 + dl2 + r2(l)[dθ2 + sin2 θ dφ2] , (3.1)

where the coordinate l ranges from −∞ to +∞ and Φ, r are free functions of l. We use
this metric to model a traversable wormhole which connects two copies of asymptotically
flat Minkowski spacetime. The wormhole throat should be located at l = 0, and the
two asymptotically flat spacetimes should be the regions l > 0 and l < 0. We get a few
conditions on Φ and r:

• Since r(l) measures the radius of a sphere with constant distance l from the throat,
it must always be positive.

• At the throat l = 0 the radius must have a positive minimal value, i.e., r(0) = r0 > 0,
r′(0) = 0 and r′′(0) > 0.

• Spacetime must be asymptotically flat on both sides of the wormhole,

lim
l→±∞

r(l)

|l|
= 1 and lim

l→±∞
Φ(l) = 1 . (3.2)

• The wormhole must not have any horizons, i.e., Φ(l) must be everywhere finite.

These coordinates are quite intuitive for defining a wormhole. However, they turn out to
be less practical for calculations. We therefore choose Schwarzschild-like coordinates on
the two patches l ≥ 0 and l ≤ 0. We substitute the distance coordinate l by the radial
coordinate r ≥ r0 on both sides of the wormhole. On the two patches the metric then
takes the form

ds2 = −e2Φ±(r)dt2 +
dr2

1− b±(r)/r
+ r2[dθ2 + sin2 θ dφ2] , (3.3)

where we now have free functions Φ± and b±, called the lapse and shape functions, on
both wormhole sides. For simplicity we assume that the wormhole is symmetric and drop
the subscripts ±. The relation between the functions r(l) and b(r) is given by the proper
distance,

dl2 =
dr2

1− b(r)/r
, (3.4)

so that we have
dr

dl
=

√
1− b(r)

r
,

d2r

dl2
=
b(r)− b′(r)r

2r2
. (3.5)

In these coordinates the conditions thus take the form:

• At the throat r = r0 we have b(r0) = r0 and b(r0)/r0 > b′(r0).

• Spacetime must be asymptotically flat on both sides of the wormhole,

lim
r→∞

b(r)

r
= 0 and lim

r→∞
Φ(r) = 1 . (3.6)

• The wormhole must not have any horizons, i.e., Φ(r) must be everywhere finite.
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One can now take the metric and calculate the Einstein tensor Gµν . This is a simple,
but tedious calculation [3, 4, 5]. The Einstein equations Gµν = 8πGTµν then yield the
energy-momentum tensor.
After the calculation it turns out that the energy-momentum tensor is in fact diagonal in
the coordinate basis of the coordinates (t, r, θ, φ) we use here; this also holds true for the
metric. We can thus choose an orthonormal basis,

ξt̂ = e−Φ∂t , ξr̂ =
√

1− b/r ∂r , ξθ̂ = r−1∂θ , ξφ̂ = (r sin θ)−1∂φ , (3.7)

and it turns out that the energy-momentum tensor has the form

Tµν = ρξt̂µξt̂ν + prξr̂µξr̂ν + pl(ξθ̂µξθ̂ν + ξφ̂µξφ̂ν) , (3.8)

where the rest energy density ρ, the radial pressure pr and the lateral pressure pl are given
by

ρ =
b′

8πGr2
, (3.9a)

pr =
1

8πG

[
2

(
1− b

r

)
Φ′

r
− b

r3

]
, (3.9b)

pl =
1

8πG

[(
1− b

r

)(
Φ′′ + Φ′2 +

Φ′

r

)
− b′r − b

2r2

(
Φ′ +

1

r

)]
. (3.9c)

We now have a look at the null energy condition in the form (2.13). In particular we
consider the radial pressure. One can check that

ρ+ pr = −e
2Φ

r

d

dr

[
e−2Φ

(
1− b

r

)]
= −e

2Φ

r
F ′(r) . (3.10)

At the wormhole throat r = r0 we have F (r0) = 0, since b(r0) = r0. Anywhere else we
have F (r) > 0 for r > r0. From this follows that F ′(r) > 0 for some region near the
throat. But this means that ρ+ pr < 0, and so the null energy condition is violated. From
the relations between the different energy conditions it follows that also all other energy
conditions are violated. Traversable wormholes therefore require exotic matter.

4 Warp drives

Another example for an exotic solution of the Einstein equations is the warp drive, which
is given by the metric [6, 7]

ds2 = −dt2 + dx2 + dy2 +
[
dz − v(t)f

(√
x2 + y2 + (z − z0(t))2

)
dt
]2
, (4.1)

where v(t) = z′0(t) and

f(r) =
tanh[σ(r +R)]− tanh[σ(r −R)]

2 tanh(σR)
(4.2)

with constants R > 0, σ > 0. This spacetime metric describes a “bubble” of radius R and
inverse wall thickness σ which “slides” through spacetime with a velocity v(t), where the
center of the bubble is at x(t) = 0, y(t) = 0, z(t) = z0(t). An observer who stays in the
center of the bubble moves on a timelike geodesic and his clock measures the same time as
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a clock outside the bubble, in the asymptotically flat surrounding spacetime. The velocity
of the bubble can be arbitrarily high, allowing the observer to travel arbitrary distances
in finite time.
The calculation of the energy-momentum tensor for the warp drive metric is quite lengthy.
We thus look at only one component of the energy-momentum tensor, which describes the
energy measured by a co-moving observer, i.e., an observer whose four-velocity ξµ is given
by

ξ = ∂t + vf∂z . (4.3)

This observer measures the energy density

Tµνξ
µξν = − 1

32πG

v2(x2 + y2)

r2
f ′2 < 0 . (4.4)

This clearly violates the weak energy condition (1.1).
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