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1 Tensor densities

We know that tensors are quantities A whose components change under a coordinate
transformation z# — z/* according to the transformation law
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We further know that the covariant derivative
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of a tensor A is again a tensor, provided that the connection coefficients satisfy the trans-
formation law
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However, sometimes we find quantities which are not tensors, but obey a different simple
transformation law, such es \/—g, which transforms according to
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We thus generalize the concept of tensors to tensor densities. A tensor density 2 of weight
w € R is a quantity which transforms under coordinate changes according to
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The covariant derivative of a tensor density of weight w is again a tensor density of weight
w if it is given by
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Note that this holds for any covariant derivative, not only for the Levi-Civita connection.
Some properties of tensor densities:

e A tensor density of weight 0 is a tensor.

e The product of two tensor densities 2, B of weights w and w’ is a tensor density of
weight w + w'.

e The Leibnitz rule V,(AB) = (V,20)B + 2A(V,B) holds also for tensor densities.
A useful example for a tensor density of weight 1 is /—g.



2 Palatini method of variation

In the first lecture we have seen how to derive the Einstein equations from the Einstein-

Hilbert action .
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by variation with respect to the metric. In this calculation we took R[g] to be the Ricci
tensor which is calculated from the Levi-Civita connection I'*,, of g,,. We now follow
a different approach, in which I'*,, is not given by the Levi-Civita connection, but an
arbitrary torsion-free (i.e., symmetric in its lower indices) connection. The Riemann tensor
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then depends only on the connection and not on the metric. The same holds for the Ricci
tensor
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We then write the Einstein-Hilbert action in the form
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with independent variables g, and I'*,,. Consequently we must vary this action with
respect to both variables independently. We have already seen in the first lecture that
variation of the terms /—g¢g and ¢g"” yields the expression
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where we now simply replaced R, [g] with R, [I']. From this expression, together with
some matter action, we read off the Einstein equations
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We now come to the variation of the action (2.4) with respect to the connection coefficients,
which takes the form
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Recall also from the first lecture that the variation of the Ricci tensor with respect to the

connection yields
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We further introduce the tensor density
g =—g9"", (2.9)

so that the variation of the action reads
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We now apply the Leibnitz rule for tensor densities and reorder indices to obtain
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Here the first term is the covariant divergence of a vector density 2A* of weight 1. For this
expression we find

VA = 9,8 — TV, A + T4, A = 0, (2.12)

Since this is only a partial derivative, this term does not contribute to the integral. The
remaining terms take the form
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This must vanish for arbitrary variations 6I'¥,,,. Taking into account the symmetry in the
lower two indices we can thus read off the equation
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By contracting the indices p and v we obtain the equation
V,g"" =0. (2.15)
Inserting this again we then find the equation
Vgt =0. (2.16)
This means that g*” must be covariantly constant. From this finally follows
Vg =0, (2.17)

so that V must indeed be the unique metric-compatible torsion-free connection, which is
the Levi-Civita connection.



