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1 Preliminaries

In the following we use Cartesian coordinates (xµ) = (t, xi) and denote partial derivatives
with respect to these coordinates by

A,µ =
∂A

∂xµ
, A,0 =

∂A

∂t
, A,i =

∂A

∂xi
. (1.1)

The total time derivative is given by

dA

dt
=
∂A

∂t
+ vi

∂A

∂xi
= A,0 + viA,i . (1.2)

2 Post-Newtonian bookkeeping

Purpose of the parametrized post-Newtonian (PPN) formalism is to provide a universal
procedure for testing gravity theories using observations in the solar system. Necessary
condition to apply the formalism to a gravity theory is that the theory models the spacetime
geometry by a metric gµν and that the motion of test masses within this geometry follows
geodesics. The gravitational field equations of the theory in question determine the metric
gµν depending on the distribution of gravitating source matter, which in turn determines
the motion of test masses. Both the matter distribution in the solar system and the motion
of its constituents can be measured. The combination of these measurements then provides
a test for the gravitational field equations of the theory in question.
We assume that all masses in the solar system move at small velocities |~v| � c ≡ 1. The
action for the motion of a test mass m0 then takes the form

S = −m0

∫ √
−gµν ẋµẋνdt = −m0

∫ √
−g00 − 2g0ivi − gijvivjdt . (2.1)

This expression has the form of a perturbative expansion in the velocity ~v. We further
assume that the gravitational field is weak, so that we can approximate the metric in the
form

gµν = ηµν + hµν (2.2)

as an expansion around the flat Minkowski metric. It follows from the structure of the ac-
tion (2.1) that perturbations of the component g00 have a stronger influence on the motion
of test masses than gij , since the latter is suppressed by a factor v2. The perturbation hµν
is thus further divided into velocity orders

hµν = h(1)µν + h(2)µν + h(3)µν + h(4)µν +O(5) , (2.3)
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where each term h
(n)
µν ∼ |~v|n is of order O(n). It turns out that in the Newtonian limit the

only relevant and non-vanishing term in this expansion is h
(2)
00 , while in the post-Newtonian

limit we consider here also h
(2)
ij , h

(3)
0i , h

(4)
00 are necessary.

We further assume that the gravitational field equations are of the form

Kµν = 8πTµν , (2.4)

whereKµν is a geometric curvature tensor which depends on the metric gµν and vanishes for
a flat Minkowski metric. Through the perturbative expansion (2.2) and (2.3) it decomposes

into terms K
(n)
µν of velocity order O(n). We thus need a similar decomposition of the

energy-momentum tensor, for which we assume a perfect fluid form

Tµν = (ρ+ ρΠ + p)uµuν + pgµν (2.5)

with rest energy density ρ, internal energy density ρΠ, pressure p and four-velocity uµ.
Based on their values in the solar system we assign velocity orders ρ ∼ Π ∼ O(2) and p ∼
O(4). Together with the velocity components vi = ui/u0 we then find the decomposition
of the energy-momentum tensor in the form

T00 = ρ
(

1 + Π + v2 − h(2)00

)
+O(6) , (2.6a)

T0j = −ρvj +O(5) , (2.6b)

Tij = ρvivj + pδij +O(6) . (2.6c)

Since all changes of metric components and the matter source over time are induced by
motions of the source matter with velocity |v| we further weight all time derivatives with
another factor O(1).

3 Metric ansatz

In order to solve generic gravitational field equations of the form (2.4) one uses the metric
ansatz

h
(2)
00 = 2αU , (3.1a)

h
(2)
ij = 2γUδij , (3.1b)

h
(3)
0i = −1

2
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vi −

1

2
(1 + α2 − ζ1 + 2ξ)Wi , (3.1c)

h
(4)
00 = −2βU2 − 2ξΦW + (2 + 2γ + α3 + ζ1 − 2ξ)Φ1 + 2(1 + 3γ − 2β + ζ2 + ξ)Φ2 (3.1d)

+ 2(1 + ζ3)Φ3 + 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A .

The quantities U, Vα,Wα,ΦW ,Φ1, . . . ,Φ4,A are the PPN potentials, which are Poisson-like
integrals over the source matter distribution of the form

U(t, ~x) =

∫
d3x′

ρ(t, ~x′)

|~x− ~x′|
∼ O(2) , (3.2a)

Vi(t, ~x) =

∫
d3x′

ρ(t, ~x′)vi(t, ~x
′)

|~x− ~x′|
∼ O(3) , (3.2b)

Wi(t, ~x) =

∫
d3x′

ρ(t, ~x′)vj(t, ~x
′)(xi − x′i)(xj − x′j)
|~x− ~x′|3

∼ O(3) (3.2c)
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and similar for the fourth order potentials ΦW ,Φ1, . . . ,Φ4,A.
The constant α, which corresponds to the effective gravitational constant, is conventionally
set to 1. The remaining constants β, γ, α1, . . . , α3, ζ1, . . . , ζ4, ξ are the PPN parameters,
which are characteristics of the theory under consideration. They are determined by a
perturbative solution of the field equations (2.4). For general relativity they take the
values

γ = β = 1 , α1 = . . . = α3 = ζ1 = . . . = ζ4 = ξ = 0 . (3.3)

By experimentally probing the spacetime geometry in the solar system through various
effects these PPN parameters can also be measured. Comparing the theoretical values
obtained from a particular theory with the measured values then allows testing the viability
of this theory.

4 Physical interpretation of the PPN parameters

The coefficients of the terms in the metric (3.1) are chosen as linear combinations of PPN
parameters in a particular way so that the PPN parameters can be interpreted by different
physical effects.

4.1 γ

The PPN parameter γ describes how much spatial curvature is produced per unit mass.
This spatial curvature can be measured, for example, by the deflection of light. A light
ray passing by a mass m at a distance d is deflected by the angle

δθ = (1 + γ)(1 + cos θ0)
m

d
, (4.1)

where θ0 is the angular separation between the observed light ray and the line of sight
towards the deflecting mass.
Another method is to measure the time delay of a light or radio signal on its way from
Earth to a planet or spacecraft and back, typically using the solar mass m = M�. In solar
centered coordinates, ~x� = 0, the two-way travel time of a radio signal is given by

∆t = 2|~x⊕ − ~xr|+ δt = 2|~x⊕ − ~xr|+ 2(1 + γ)m ln
(r⊕ + ~x⊕ · n̂)(rr − ~xr · n̂)

d2
, (4.2)

where ~x⊕ is the position of the Earth, ~xr is the position of the reflector, r⊕ = |~x⊕| and
rr = |~xr| are their distances from the Sun, n̂ is the direction of the photon on its return
flight and d is the distance at which the signal passes by the Sun. The time delay δt is
maximal when the reflector is in superior conjunction, i.e., straight behind the Sun, in
which case

δt = 2(1 + γ)m ln
4r⊕rr
d2

. (4.3)

This method has been used by the Cassini experiment, in which d = 1.6r� and rr =
8.43AU. The resulting value of γ obtained from this experiment is γ − 1 = (2.1 ± 2.3) ·
10−5 [3].

4.2 β

The PPN parameter β measures the non-linearity in the Newtonian law of gravity. It
can be measured, for example, by the perihelion precession of Mercury. The integrated
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perihelion shift over one orbital period of Mercury is given by

∆ω̃ =
6πm

p

[
2 + 2γ − β

3
+

2α1 − α2 + α3 − 2ζ2
6

µ

m
+ J2

R2

2mp

]
, (4.4)

where m is the solar mass, µ is the mass of Mercury, p is the perihelion distance of Mercury
from the Sun, J2 is the solar quadrupole moment and R is the solar radius. The second
term can be neglected since

µ

m
=
M'
M�

≈ 2 · 10−7 . (4.5)

Currently the best bound obtained from experiments is given by |2γ−β−1| < 3 ·10−3 [3].

4.3 ξ

The PPN parameter ξ introduces a term into the Lagrangian of an n-body system of the
form

Lξ = −ξ
2

∑
i,j

mimj

r3ij
~rij ·

[∑
k

mk

(
~rjk
rik
− ~rik
rjk

)]
. (4.6)

As a consequence, the Newtonian law for the interaction between two bodies acquires a
dependence on their location relative to other gravitating bodies. This term therefore
violates local position independence.

4.4 Violation of Lorentz invariance

The metric (3.1) is in general not invariant under local Lorentz transformations [2]. Trans-
formation of this metric to a system which is moving with a relative velocity ~w introduces
terms into the metric which explicitly depend on ~w. However, these terms have coeffi-
cients which are linear combinations of the parameters α1, α2, α3. They therefore vanish
for α1 = α2 = α3 = 0. These parameters thus measure the violation of Lorentz invariance.

4.5 Violation of total energy-momentum conservation

The local covariant energy-momentum conservation ∇µTµν has the post-Newtonian ap-
proximation

0 = ∇µTµ0 = ρ,0 + (ρvi),i +O(5) , (4.7a)

0 = ∇µTµi = ρ
dvi
dt

+ p,i − ρU,i +O(6) . (4.7b)

These conservation laws are satisfied independent of the theory of gravity, because they
are a consequence of the diffeomorphism invariance of the matter action.
In contrast, global conservation laws concern the conservation of the total energy-momentum
of a gravitating system in an asymptotically flat spacetime. These depend both on
the matter and gravity theories. In the post-Newtonian approximation the conserva-
tion of the total energy-momentum is given only if the local conservation laws can be
integrated to global conservation laws. The integrability condition involves the PPN
parameters. It can be shown that the local conservation laws are integrable only for
α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0 [2]. These parameters thus measure the violation of total
energy-momentum conservation.
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