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1 Cosmological symmetry

In cosmology we start from the assumption of a homogeneous, isotropic spacetime. It is
characterized by six linearly independent Killing vector fields, three of them describing
rotations and three describing translations. The metric has the general form

ds2 = −n2(t)dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
= −dt2 + a2(t)γijdx

idxj , (1.1)

where we set the lapse function n(t) to n(t) ≡ 1 by a choice of the time coordinate and
the dynamics is entirely contained in the time dependent scale factor a(t). The spatial
geometry is determined by the constant curvature parameter k in the spatial metric γij ,
which corresponds to one of the three maximally symmetric 3-spaces:

• k = 1: The 3-sphere with isometry group SO(4).

• k = 0: Euclidean 3-space with isometry group E(3) = ISO(3) = SO(3) nR3.

• k = −1: Hyperbolic 3-space with isometry group SO(3, 1).

The determinant of the metric is given by

g = −a6γ , (1.2)

where γ is the determinant of the spatial metric γij . The non-vanishing Christoffel symbols
are given by

Γ0
ij = aȧγij , Γi0i =

ȧ

a
δij , Γkij = Γkij(γ) , (1.3)

where Γkij(γ) are the Christoffel symbols of the spatial metric γij and dots denote deriva-
tives with respect to t. The Riemann tensor is given by

R0
i0j = aäγij , Ri0j0 = − ä

a
δij , Rijkl =

(
k + ȧ2

)
γim(γmkγjl − γmlγjk) . (1.4)

The Ricci tensor takes the form

R00 = −3
ä

a
, R0i = 0 , Rij = (2k + 2ȧ2 + aä)γij (1.5)

and the Ricci scalar

R = 6
k + ȧ2 + aä

a2
. (1.6)
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2 Cosmological dynamics

The dynamics are given by the Einstein equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.1)

It follows from the results of the previous section that the energy-momentum tensor must
be of the perfect fluid form

T00 = ρ , T0i = 0 , Tij = pa2γij (2.2)

with a homogeneous and isotropic energy density ρ = ρ(t) and pressure p. Note that this
perfect fluid form is not an assumption, but a consequence of the assumed cosmological
symmetry. The field equations then reduce to

3
k + ȧ2

a2
− Λ = 8πGρ , (2.3a)

−k + ȧ2 + 2aä

a2
+ Λ = 8πGp . (2.3b)

The second equation can be solved for ä, which yields

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.4)

Equations (2.3a) and (2.4) are the Friedmann equations. Equation (2.4) can also be
replaced by

ρ̇ = −3
ȧ

a
(ρ+ p) , (2.5)

which corresponds to the continuity equation ∇µTµ0 = 0 and can be obtained from taking
the time derivative of equation (2.3a). In order to solve these differential equations it is
often useful to use the cosmological time parameter η defined by dt = a dη instead of t,
from which one obtains

3

(
a′2

a4
+

k

a2

)
− Λ = 8πGρ , (2.6a)

−2
a′′

a3
+
a′2

a4
− k

a2
+ Λ = 8πGp . (2.6b)

Here primes denote derivatives with respect to η. In order to solve these equations one
further needs to specify a relation between density ρ and pressure p. This relation depends
on the matter content. Note that the cosmological constant has the same effect as a perfect
fluid with constant density and pressure

ρ =
Λ

8πG
, p = − Λ

8πG
. (2.7)

In the following we will therefore neglect the cosmological constant and instead model it
by an appropriate contribution to the matter content of the universe.
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3 Classical solutions

For the classical solutions one assumes an equation of state of the form

p = wρ , (3.1)

where the constant barotropic index w is w = 0 for dust or w = 1/3 for radiation. For
Λ = 0 this leads to the following solutions with constant scale parameter A:

w = 0 w = 1
3

k = −1 a = A(cosh η − 1), t = A(sinh η − η) a = A sinh η, t = A(cosh η − 1)

k = 0 a = A
2 η

2, t = A
6 η

3 a = Aη, t = A
2 η

2

k = 1 a = A(1− cos η), t = A(η − sin η) a = A sin η, t = A(1− cos η)

All solutions have a Big Bang singularity with a = 0 at the beginning t = 0 of time, where
the expansion of the universe begins. This expansion slows down as the universe evolves,
and for k = 1 even stops and leads to a collapse of the universe. For k = −1 the universe
continues to expand forever. The critical solution between these two is the k = 0 solution,
where the universe also keeps expanding, but the expansion rate tends to 0. The model
for dust matter with k = 0 is also known as the Einstein-de Sitter model.
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4 Dark energy and the cosmological constant

Note that in the models with w = 0 and w = 1/3 the acceleration (2.4) is always negative,
since ρ+ 3p is positive. In order to obtain an accelerating expansion one need matter with
a barotropic index w < −1/3, which is known as dark energy. A positive cosmological
constant, which corresponds to dark energy with w = −1, satisfies this condition. If we
assume no other matter to be present, we obtain the following solutions with η < 0:

3



k = −1 a = −A/ sinh η, t = −A ln(− tanh η
2 )

k = 0 a = −A/η, t = −A ln(−η
2 )

k = 1 a = −A/ sin η, t = −A ln(− tan η
2 )

For k = −1 the universe starts from a Big Bang singularity, while for k = 0 and k = −1
it extends into the infinite past. For k = 0 the expansion is exponential, a ∼ et/A, so that
in the infinite past the universe becomes infinitely small. This model is also known as the
de Sitter model. For k = 1 there is a positive minimal radius at t = 0. In all solutions the
universe expands forever.
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5 Practical cosmology

While the variables we used in the previous sections are helpful for understanding the
geometry of the universe and its evolution, they are less helpful for experimental purposes.
In cosmological experiments one typically observes physical quantities at a fixed time, such
as the present time or the time of the generation of the cosmic microwave background. An
important observable is the Hubble parameter

H =
ȧ

a
, (5.1)

which can be measured from the redshift and distance of different galaxies. Its present
value is denoted by H0. In contrast, the present value of the scale factor a0 cannot be
measured directly.
We have seen that the evolution of the universe crucially depends on the choice of the
curvature parameter k. In order to determine this parameter one make use of the first
Friedmann equation (2.3a), where we again set Λ = 0 and include its effect into an ap-
propriate contribution to the matter content. If the density ρ is smaller than the critical
density

ρcrit =
3H2

8πG
, (5.2)

the term k/a2 must be negative, so that k = −1. Correspondingly, if the density is larger
that the critical density, it follows that k = 1. Finally, from ρ = ρcrit follows k = 0.
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From the present time values ρ0 and H0 of the density and the Hubble parameter one
defines the ratio

Ω =
8πGρ0

3H2
0

, (5.3)

which is a constant since it depends only on quantities measured at the fixed present time.
Using the continuity equation (2.5) one finds that the time dependent density is given by

ρ = ρ0

(a0

a

)3w+3
= Ω

3H2
0

8πG

(a0

a

)3w+3
(5.4)

for a perfect fluid with barotropic index w. However, in practice one usually assumes a
mixture of different matter components. In the ΛCDM model, where one has a cosmological
constant and dark matter in addition to the ordinary baryonic matter and radiation, these
components have densities ρΛ with w = −1, ρM with w = 0 and ρR with w = 1/3. For
the present time one thus defines

ΩΛ =
8πGρΛ0

3H2
0

, ΩM =
8πGρM0

3H2
0

, ΩR =
8πGρR0

3H2
0

, Ω = ΩΛ + ΩM + ΩR . (5.5)

The first Friedmann equation (2.3a) at present time then yields the relation

ΩΛ + ΩM + ΩR = 1 +
k

a2
0H

2
0

= 1− ΩK , (5.6)

where one defines

ΩK = − k

a2
0H

2
0

. (5.7)

The sign of ΩK then determines the value of k. Current observations that ΩK is small, so
that one often encounters the assumption k = 0 of a flat universe.
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