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1 Speed of gravitational waves

In this lecture we discuss the properties of gravitational waves in alternative theories of
gravity. Our discussion is based on the previous two lectures on gravitational waves in
general relativity. We only consider the propagation of gravitational waves in vacuum,
where the energy-momentum tensor Tµν vanishes. In particular we are interested in the-
ories in which the flat Minkowski metric gµν = ηµν solves the gravitational vacuum field
equations. In addition to the metric there may be other gravitational fields present in the
theory, such as scalars, vectors or additional tensor fields, which we collectively denote by
X. We assume that these have some fixed, constant background value X0, so that the
full vacuum solution is given by (ηµν , X0). This allows us to consider small perturbations
around this vacuum solution,

gµν = ηµν + hµν , X = X0 + χ , (1.1)

and to linearize the field equations in the perturbations hµν and χ. The resulting field
equations are then generically of the form

DAB(h, χ)B = 0 , (1.2)

where (h, χ)A runs over all components of the metric perturbation hµν and the auxiliary
field perturbation χ, and DAB denotes some differential operator. This means that DAB
is a matrix whose components contain constants and partial derivatives ∂µ acting on the
fields (h, χ)A. In order to determine solutions to these linearized field equations we consider
the plane wave ansatz

hµν(x) = ĥµνe
ikρxρ , χ(x) = χ̂eikρx

ρ
(1.3)

with constant wave covector kµ and complex amplitudes ĥµν and χ̂. This ansatz corre-
sponds to a single mode in a Fourier decomposition of the gravitational wave - the physical
gravitational wave must be real, of course. This ansatz is useful since the derivatives ∂µ
from the differential operator DAB act only on the exponential function and yield the
well-known result

∂µe
ikρxρ = ikµe

ikρxρ . (1.4)

This means that we can replace the differential operator DAB in the linearized field equa-
tions (1.2) by its Fourier transform D̂AB(k), where we simply replace all derivatives ∂µ by
ikµ. The resulting Fourier transformed field equations,

D̂AB(k)(ĥ, χ̂)B = 0 , (1.5)
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are now simply a set of linear algebraic equations. These equations possess non-trivial
solutions if and only if the matrix D̂AB(k) is degenerate, i.e., if its determinant van-
ishes. We can therefore determine all allowed wave covectors kµ by solving the equation
det D̂AB(k) = 0, which is a polynomial equation in kµ.
As an example consider the linearized vacuum field equations in scalar tensor gravity,

�ψ = 0 , �hµν + hρρ,µν − hµρ,νρ − hνρ,µρ = −2
ψ,µν
Ψ0

. (1.6)

Choosing a gauge in which

hµρ
,ρ − 1

2
hρρ,µ −

ψ,µ
Ψ0

= 0 (1.7)

simplifies the second field equation to �hµν = 0. Now the differential operator is simply
given by DAB = �δBA and its Fourier transform is D̂AB = −kµkµδBA . The indices run
over the 10 independent components of hµν and the scalar field, so that the determinant
is given by (−kµkµ)11. This vanishes if and only if kµ is a null covector, from which we
see that gravitational waves in scalar tensor gravity propagate at the speed of light.
Although there has been no direct observation of gravitational waves, there are indirect
hints which indicate that they should propagate at the speed of light. These indirect hints
come from the observation of ultrarelativistic cosmic particles. If the speed of gravitational
waves would be lower than the speed of light, there would be an energy cut-off if the velocity
of cosmic particles equals the speed of gravitational waves, since any particles which are
faster would dissipate energy in the form of gravitational waves. In the following we will
therefore restrict ourselves to gravitational waves which propagate at the speed of light.

2 Polarization of gravitational waves

Recall from the previous two lectures that the observable effect of gravitational waves on
a set of test masses, whose trajectories are timelike geodesics, is given by the geodesic
deviation. We have seen that a suitable coordinate system is given by Fermi coordinates
around the trajectory of a given observer. Here the time coordinate t is given by the
proper time along the observer geodesic and the spatial coordinates xi are chosen so that
on the observer trajectory xi = 0, the metric is given by the Minkowski metric ηµν and
the Christoffel symbols Γµνρ vanish. In these coordinates the acceleration of a test mass
is given by

d2xi

dt2
= −R0i0jx

j . (2.1)

The 6 components R0i0j of the Riemann tensor are denoted electric components.
It is convenient to use a complex double null basis of the tangent spaces introduced by
Newman and Penrose which is spanned by the vectors lµ, nµ,mµ, m̄µ given by

l = ∂0 + ∂3 , n =
1

2
(∂0 − ∂3) , m =

1√
2

(∂1 + i∂2) , m̄ =
1√
2

(∂1 + i∂2) , (2.2)

and to express tensors in terms of this basis [3]. For example, the Minkowski metric in
this basis takes the form

ηµν =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 . (2.3)
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Figure 1: Effects of gravitational waves on a set of test masses, from left to right, for
the wave components Ψ4,Φ22,Ψ3,Ψ2. For the two complex components Ψ4,Ψ3 the upper
image shows the real part and the lower image shows the imaginary part.

The diagonal elements vanish since lµ, nµ,mµ, m̄µ are null vectors, and the only non-
vanishing scalar products are nµl

µ = −1 and mµm̄
µ = 1.

We now consider a plane wave propagating in the positive x3 direction, which is given by

hµν = ĥµνe
−iωlµxµ = ĥµνe

iω(t−x3) = ĥµνe
iωu , χ = χ̂eiωu , (2.4)

where we have introduced the retarded time u = t − x3. This means that all quantities
which are constructed from the metric perturbation hµν and the perturbations χ of other
gravitational fields depend only on u. In particular we can calculate the Riemann tensor
for this plane wave and find that it is fully determined by the components in the Newman-
Penrose basis given by

Ψ2 = −1

6
Rnlnl =

1

12
ḧll , Ψ3 = −1

2
Rnlnm̄ = −1

2
Rnlnm =

1

4
ḧlm̄ =

1

4
ḧlm ,

Ψ4 = −Rnm̄nm̄ = −Rnmnm =
1

2
ḧm̄m̄ =

1

2
ḧmm , Φ22 = −Rnmnm̄ =

1

2
ḧmm̄ , (2.5)

where dots denote derivatives with respect to u. Note that Ψ3 and Ψ4 are complex. From
these one can easily calculate the electric components of the Riemann tensor and see its
influence on a set of test masses. These are shown in figure 1.
We now consider two observers located at the same point xµ = x′µ = 0 whose coordinate
systems are related by a Lorentz transform, such that both agree on the observed frequency
ω and direction of the wave. This means that the Lorentz transform must leave the retarded
time u = u′ and thus the wave vector lµ = l′µ unchanged. In the Newman-Penrose basis
this Lorentz transform can be parametrized in the form

l′µ

n′µ

m′µ

m̄′µ

 =


1 0 0 0
αᾱ 1 ᾱeiφ αe−iφ

α 0 eiφ 0
ᾱ 0 0 e−iφ




lµ

nµ

mµ

m̄µ

 = Λ(φ, α)


lµ

nµ

mµ

m̄µ

 (2.6)

using parameters φ ∈ [0, 2π) and α ∈ C. The product of two such matrices is given by

Λ(φ′, α′)Λ(φ, α) = Λ(φ+ φ′, α′ + αeiφ
′
) , (2.7)
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which shows that these Lorentz transforms form a group isomorphic to U(1) nC ∼=
SO(2) nR2 = E(2), the two-dimensional Euclidean group spanned by rotations with angle
φ and translations by (<α,=α).
If we apply the Lorentz transform shown above to the components of the Riemann tensor
we see that they transform as

Ψ′2
Ψ′3
Ψ̄′3
Ψ′4
Ψ̄′4
Φ′22

 =



1 0 0 0 0 0
3ᾱ e−iφ 0 0 0 0
3α 0 eiφ 0 0 0
6ᾱ2 4ᾱeiφ 0 e−2iφ 0 0
6α2 0 4αe−iφ 0 e2iφ 0
6αᾱ 2αe−iφ 2ᾱeiφ 0 0 1





Ψ2

Ψ3

Ψ̄3

Ψ4

Ψ̄4

Φ22

 (2.8)

From these transformations we can read off some properties of the corresponding waves.
Under pure rotations α = 0 the matrix becomes diagonal and we see that Ψ2 and Φ22 have
helicity 0, so they are scalar modes; Ψ3 and Ψ̄3 have helicity ±1, so they are vector modes;
Ψ4 and Ψ̄4 have helicity ±2, so they are tensor modes; the latter are the two polarizations
found in general relativity.
Decomposing the matrix above into its real and imaginary parts we see that we have con-
structed a six-dimensional, real representation of the Euclidean group. This representation
is not irreducible, since it contains subspaces which are invariant under the group action.
These subspaces allow a decomposition of the full six-dimensional representation space
into subsets which is invariant under Lorentz transformations. This means that if a two
observers measure a gravitational wave, they may not agree on the individual components
Ψ2,Ψ3,Ψ4,Φ22, but they agree on the subset in which this wave is located. The subsets
are as follows, and are labeled by the Petrov type of the non-vanishing Weyl tensor and
by the dimension of the corresponding representation of E(2):

• O0: Ψ2 = Ψ3 = Ψ4 = Φ22 = 0.

• O1: Ψ2 = Ψ3 = Ψ4 = 0, Φ22 6= 0.

• N2: Ψ2 = Ψ3 = Φ22 = 0, Ψ4 6= 0.

• N3: Ψ2 = Ψ3 = 0, Ψ4 6= 0, Φ22 6= 0.

• III5: Ψ2 = 0, Ψ3 6= 0.

• II6: Ψ2 6= 0.

In any theory of gravity some of these wave types may be allowed, while other may be
prohibited by the gravitational field equations. The largest set of allowed waves determines
the E(2) class of the theory. As an example, consider the linearized vacuum field equations
of scalar tensor gravity given by

�ψ = 0 , Rµν =
ψ,µν
Ψ0

, (2.9)

together with the wave ansatz

hµν = ĥµνe
iωu , ψ = ψ̂eiωu . (2.10)
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This ansatz already solves the field equation for the scalar field. The field equation for the
metric yields

Rµν =
ψ,µν
Ψ0

= −ω
2ψ̂

Ψ0
eiωulµlν , (2.11)

so that the only non-vanishing component of the Ricci tensor is Rnn. From the wave ansatz
we find the Ricci tensor

Rnn = −ḧmm̄ , Rnm = −1

2
ḧlm , Rnm̄ = −1

2
ḧlm̄ , Rmm̄ = −1

2
ḧll (2.12)

and all other components vanish identically. The field equations thus yield

ĥlm = ĥlm̄ = ĥll = 0 , (2.13)

so that Ψ2 = Ψ3 = 0. Gravitational waves with Ψ4 6= 0 and Φ22 6= 0 solve the field
equations, so that the E(2) class of scalar tensor gravity is N3.
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