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1 Asymptotic flatness
In a few previous lectures we have considered the gravitational waves emitted by what we described as
an isolated system, i.e., a system whose matter content is confined to a compact spatial region, and we
have assumed that the spacetime is asymptotically flat, i.e., it “approaches Minkowski space far from the
source” or even “at infinity”. We will now make this statement precise and give a proper definition of
such spacetimes. In the following, we will denote by M̃ the physical spacetime, equipped with a physical
metric g̃µν . To describe the geometry “at the infinity” of M̃ , we need to bring this infinity to some finite
manifold. In the following, we define our spacetime to be asymptotically flat if the following is true:

1. There exists a smooth, injective mapping ψ : M̃ → M into some manifold M , such that the image
ψ(M̃) ⊂M of M̃ under ψ is diffeomorphic to M̃ and has a non-vanishing boundary I = ∂(ψ(M̃)) ⊂
M .

2. M is equipped with a Lorentzian metric gµν and a real function Ω such that:

(a) Ω > 0 on the image ψ(M̃).

(b) On the boundary I, one has Ω = 0, ∂µΩ ̸= 0 and gµν∂µΩ∂νΩ = 0.

(c) The physical metric is given by the pullback of the conformally rescaled metric g̃ = ψ∗(Ω−2g).

In the following, we will use the abbreviation

nµ = ∂µΩ . (1.1)

Note that the objects given in the definition above are not uniquely defined. Given a positive function
ω :M → R+, one may define

Ω′ = ωΩ , g′µν = ω2gµν , (1.2)

from which further follows
n′µ = ωnµ , n′µ = ω−1nµ , (1.3)

and one easily checks that Ω′ and g′µν will satisfy the same properties given above for Ω and gµν .

2 Vacuum Einstein equations
In the following, we assume that the Einstein equations of general relativity hold for the physical metric
g̃µν , and that the matter source is confined to a compact region within the physical spacetime M̃ . This
means in particular that near the boundary, the rescaled unphysical metric Ω−2gµν satisfies the vacuum
Einstein equations, i.e., it has vanishing Ricci tensor, which is given by

0 = R̃µν = Rµν + 2
∇µ∇νΩ

Ω
+ gµν

(
□Ω

Ω
− 3

∇ρΩ∇ρΩ

Ω2

)
. (2.1)

Taking the trace with the unphysical metric gµν yields the relation

0 = R+ 6
□Ω

Ω
− 12

∇ρΩ∇ρΩ

Ω2
, (2.2)
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which allows us to rewrite the vacuum Einstein equations as

0 = Rµν − 1

6
Rgµν + 2

∇µ∇νΩ

Ω
− gµν

∇ρΩ∇ρΩ

Ω2
. (2.3)

In the following we will multiply this equation by Ω, and it follows from the smoothness of Ω that also
the resulting equation

0 = Ω

(
Rµν − 1

6
Rgµν

)
+ 2∇µ∇νΩ− gµν

∇ρΩ∇ρΩ

Ω
(2.4)

holds. Now the first term in brackets is a smooth tensor field on M , which follows from the fact that gµν
is a smooth metric on M . Hence, its product with Ω, which vanishes at the boundary I, also vanishes at
the boundary. This means that on I we have

0 = 2∇µ∇νΩ− gµν
∇ρΩ∇ρΩ

Ω
= (Lng)µν − nρn

ρ

Ω
gµν , (2.5)

using the definition of nµ and the Lie derivative of a metric. Now the first term is a smooth tensor field on
M , and so the same must also be true for the second term, and hence for the function f = Ω−1nµn

ν . We
keep this relation in mind when we further discuss the properties of these tensor fields on the boundary I.

3 Tensor fields at the boundary
In the following, it turns out to be useful to develop a description of the asymptotic geometry which is
intrinsic to the boundary. For this purpose, one considers a diffeomorphism ζ : I → I ⊂ M , so that the
manifold I is diffeomorphic to the boundary I. Then one constructs a number of tensor fields on I ,
which will be used to model the asymptotic geometry. First, note that by construction, the vector field
nµ∂µ defined by

nµ = gµνnν = gµν∂νΩ (3.1)

is tangent to I. This follows from

nµ∂µΩ = nµnµ = gµνnµnν = 0 , (3.2)

since nµ is null on I by assumption. Hence, its restriction to I gives rise to a vector field na∂a on I ,
where we use Latin indices for coordinates on the three-dimensional manifold I . Further, the pullback
along ζ defines a metric on I , given by

gabdx
a ⊗ dxb = ζ∗(gµνdx

µ ⊗ dxν) . (3.3)

Note that this metric is degenerate, since by construction it satisfies nagab = 0. Hence, na defines the
non-trivial kernel of gab. In total, one finds that the signature of this metric is (0,+,+). Further, from
the relation (2.5) follows that

(Lng)ab = fgab , (3.4)

and so na is a conformal Killing vector field of gab, where f = f ◦ ζ. Finally, recalling that one can obtain
an equivalent description of the same asymptotic geometry via the transformations (1.2) and (1.3), we
see that two pairs (gab, n

a) and (g′ab, n
′a) define the same asymptotic geometry if there exists a function

ω : I → R+ such that
g′ab = ω2gab , n′a = ω−1na . (3.5)

Hence, we will define an asymptotic geometry as an equivalence class of pairs (gab, n
a), where gab is of

signature (0,+,+), nagab = 0 and two pairs (gab, na) and (g′ab, n
′a) are equivalent if and only if there exists

a positive function ω such that (3.5) holds. This gauge freedom under conformal transformations can be
taken into account in different ways. One possibility is to describe the tensor fields on I in terms of a
tensor field

Ξab
cd = nanbgcd , (3.6)

which is clearly invariant under the transformation (3.5), and thus depends only on the aforementioned
equivalence class and is uniquely defined by it. We may thus use Ξab

cd in order to describe the asymptotic
geometry. However, note that not any arbitrary (2, 2) tensor field on I can be written in the form given
above, but one must impose the following conditions:
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1. Non-degeneracy: Ξ ̸= 0.

2. Symmetry in upper and lower indices: Ξab
cd = Ξ(ab)

(cd).

3. Exchange of na: Ξa[b
cdΞ

e]f
gh = 0.

4. Orthogonality of na and gab: Ξab
cb = 0.

5. Signature of gab: wawbv
cvdΞab

cd > 0 for all va,wa satisfying wcv
[aΞb]c

de ̸= 0.

6. Conformal Killing property: (LvΞ)
ab

cd = fΞab
cd for some function f for all va satisfying v[aΞb]c

de = 0.

Any tensor Ξab
cd uniquely defines an equivalence class of pairs (gab, n

a) and vice versa. To make a
convenient choice for a representative of this class, we recall the relation (3.4). Under the conformal
transformation (3.5), this relation is preserved, provided that we replace f by

f′ = ω−1f+ 2ω−2Lnω . (3.7)

Starting from an arbitrary representative, we can always find (gab, n
a) such that f = 0 by applying a

suitable conformal transformation (at least locally). In the following we will assume that we have chosen
a representative for which this is the case. Note that this does not fix the representative uniquely, since
one may still perform conformal transformations satisfying Lnω = 0, i.e., such that ω is constant along
the flow lines of na.

4 Projection of the boundary
We denote by B the space of all maximally extended integral curves of na on I . Note that this space
is independent of the choice of representatives, since these integral curves are preserved under conformal
transformations (up to a change of parametrization). In the following, we will assume that B can be
equipped with the structure of a smooth manifold, such that the projection π : I → B, which assigns
to each point in I the unique integral curve passing through this point, is a smooth mapping. This
assumption allows us to study geometric objects on B and their relation with geometric objects on I . In
particular, we can consider the metric gab on I . Recall that this metric is degenerate and that its kernel
is given by the vectors proportional to na, i.e., the π-vertical vectors, whose pushforward along π vanishes.
From this property, together with our choice (Lng)ab = 0, follows that the Lie derivative of gab with
respect to any π-vertical vector field, i.e., any multiple of na, vanishes. These two properties guarantee
that there exists a metric γAB on B such that g = π∗γ, which is uniquely determined by this property
and the choice of gab. However, keep in mind that gab itself is not uniquely defined by the conditions we
imposed in the previous section, but only up to a conformal rescaling by a function ω which is constant
along the flow lines of na. Hence, we see that we have an analogous freedom of conformal transformations
of the metric γAB on B, the pullback of which then yields the transformation ω on I .

5 The Bondi-Metzner-Sachs algebra
We now come to the question which class of diffeomorphisms φ : I → I leaves the asymptotic geometry
defined above in terms of Ξab

cd invariant, i.e., satisfy the condition

φ∗Ξ = Ξ . (5.1)

We aim to express this condition in terms of a representative (gab, n
a) with (Lng)ab = 0. Denoting the

pullback by a prime, we have
Ξ′ab

cd = n′an′bg′cd , (5.2)

and so Ξ′ab
cd = Ξab

cd if and only if

g′ab = k2gab , n′a = k−1na (5.3)
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for some function k on I . We can restrict this function further by recalling that the Lie derivative is
preserved under diffeomorphisms, so that

0 = (Ln′g′)ab = 2(Lnk)gab , (5.4)

and thus k is necessarily constant along the integral curves of na.
For simplicity, we will restrict ourselves now to infinitesimal transformations, generated by vector fields
ξa on I . Such a vector field generates an infinitesimal symmetry if and only if

(LξΞ)
ab

cd = 0 , (5.5)

or in other words, if and only if there exists a function κ : I → R such that

(Lξg)ab = 2κgab , (Lξn)
a = −κna , (5.6)

where Lnκ = 0. Our aim is to find a simple parametrization for these vector fields, which will constitute
the Lie algebra L of infinitesimal asymptotic symmetries. We will do so in two steps, and show how the
algebra can be decomposed into two parts.
Consider first a vector field ξa on I given by

ξa = ana (5.7)

for some arbitrary function a on I . One then easily calculates the Lie derivatives

(Lξg)ab = 0 , (Lξn)
a = −(Lna)n

a . (5.8)

Hence, this vector field generates an asymptotic symmetry (with κ = 0) if and only if Lna = 0, i.e., a is
constant along the integral curves of na. This is the case if and only if a is the pullback of a function α on B,
a = π∗α. We will denote the set of these infinitesimal symmetries, which we call supertranslations, by S.
Note that the commutator of two supertranslations vanishes, and that the sum of two supertranslations is
again a supertranslation, so that they form an abelian subalgebra of L. Further, for any supertranslation
ana ∈ S and arbitrary symmetry ξa ∈ L one has

[ξ, an]a = (Lξa− aκ)na . (5.9)

Note that this is an element of L, since L is a Lie algebra with its Lie bracket given by the commutator
of vector fields, and since it is a multiple of na, it is even an element of S, which means that the factor in
brackets must be constant along the integral curves of na. Indeed, one has

Ln(Lξa− aκ) = LnLξa− Ln(aκ) = L[n,ξ]a = Lκna = 0 . (5.10)

We have thus shown that S is an ideal of L, which is parametrized by functions α : B → R. This
means that in order to determine the full algebra L, we can now study the quotient algebra L/S, which
is constituted by equivalence classes of elements of L, whose difference lies in S.
To determine the quotient algebra L/S, consider an arbitrary vector field ξa on I , and define ba = gabξ

b.
Note that ba satisfies ban

a = 0 and is uniquely defined by ξa. Conversely, ξa is not fully determined by
ba, but only up to adding ana with an arbitrary function a : I → R. We now aim to show that the
condition of ξa + ana being a symmetry can be expressed as conditions on a and ba, which determine a
up to a function ã satisfying Lnã = 0, i.e., up to adding an element of S, so that ba will be sufficient to
determine a unique element of L/S. For this purpose, let us first use the linearity of the Lie derivative to
calculate the second condition (5.6) as

−κna = (Lξ+anan)a = (Lξn)
a − (Lna)n

a , (5.11)

with some κ satisfying Lnκ = 0. The second term is proportional to na, and by a suitable choice of a, it
can be any vector field proportional to na. Hence, if also the first term is proportional to na, it can be
canceled by the second term, where a is determined by integrating Lna along the flow lines of na, up to
the aforementioned function ã. We thus only need to demand that (Lξn)

a is proportional to na, which
can equivalently be expressed as

0 = gab(Lξn)
b = −gab(Lnξ)

b = −(Lnb)a . (5.12)
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Together with the property ban
a = 0 this means that ba must be the pullback of some βA on B, b = π∗β.

We now aim to find a condition on this βA that will be equivalent to the first condition (5.6) and determine
κ in the equation above. Recall that on B we have a (non-degenerate) metric γAB , which allows us to
raise one index to get a vector field βA = γABβB . This vector field generates a flow ϕ : R×B → B on B,
which gives rise to the Lie derivative

(Lβγ)AB = lim
t→0

(ϕ∗t γ)AB − γAB

t
. (5.13)

This is obviously a symmetric, covariant tensor field on B, and so we can take its pullback to I . To
understand the result of this operation, let us compare it with the flow φ : R×I → I on I . Note that
by construction we have β = π∗ ◦ ξ, and so

ϕt ◦ π = π ◦ φt . (5.14)

But using the fact that the metrics on B and I are related by g = π∗γ, we have

(π∗Lβγ)ab = lim
t→0

(π∗ϕ∗t γ)ab − (π∗γ)ab
t

= lim
t→0

(φ∗
tπ

∗γ)ab − (π∗γ)ab
t

= lim
t→0

(φ∗
t g)ab − gab

t
= (Lξg)ab .

(5.15)
Using the fact that the Lie derivative of gab with respect to any multiple of na vanishes, we thus find that
ξa, and thus ξa + ana, satisfies the first condition with κ = π∗k if and only if

(Lβγ)AB = 2kγAB , (5.16)

i.e., if βA generates a conformal symmetry of γAB . Hence, there is a one-to-one correspondence between
such conformal symmetries and elements of L/S.
In summary, we have thus found a simple description of the algebra L of infinitesimal asymptotic symme-
tries. This algebra is known as the Bondi-Metzner-Sachs algebra, or BMS algebra.

6 Examples
It is helpful to consider a few examples which satisfy the asymptotic flatness condition and derive the
corresponding formulas. Here we look at Schwarzschild and Minkowski spacetime.

6.1 Schwarzschild spacetime
In the usual spherical coordinates (xµ) = (t, r, ϑ, φ), the Schwarzschild metric g̃µν on the physical spacetime
M̃ is given by

g̃µνdx
µ ⊗ dxν = −

(
1− R

r

)
dt⊗ dt+

(
1− R

r

)−1

dr ⊗ dr + r2
(
dϑ⊗ dϑ+ sin2 ϑ dφ⊗ dφ

)
, (6.1)

where R = 2Gm is the Schwarzschild radius. In the following we will only consider the exterior spacetime
r > R. On this region we can define new coordinates

u = t− r −R ln
( r
R

− 1
)
, ρ =

1

r
. (6.2)

In these new coordinates, the exterior Schwarzschild spacetime is given by 0 < ρ < R−1. The physical
metric on this region reads

g̃µνdx
µ ⊗ dxν =

1

ρ2
[
du⊗ dρ+ dρ⊗ du− ρ2(1−Rρ)du⊗ du+

(
dϑ⊗ dϑ+ sin2 ϑdφ⊗ dφ

)]
. (6.3)

We now consider this exterior region to be a subset of the unphysical spacetime M , with ψ given by
the canonical inclusion map. This unphysical spacetime can be extended to the whole coordinate range
ρ < R−1, with I = {ρ = 0} being the boundary of M̃ in M . Further, M can be equipped with a metric

gµνdx
µ ⊗ dxν = du⊗ dρ+ dρ⊗ du− ρ2(1−Rρ)du⊗ du+ dϑ⊗ dϑ+ sin2 ϑ dφ⊗ dφ . (6.4)
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One easily checks that this metric has everywhere Lorentzian signature. This can be seen by explicitly
writing the orthonormal basis

∂u +
ρ2(1−Rρ)− 1

2
∂ρ , ∂u +

ρ2(1−Rρ) + 1

2
∂ρ , ∂ϑ ,

1

sinϑ
∂φ , (6.5)

which is well-defined on all of ρ < R−1. Further, defining Ω = ρ, we see that gµν = Ω2g̃µν and that Ω is
positive on M̃ . On the boundary I, we have Ω = 0, while its gradient satisfies

nµdx
µ = ∂µΩdxµ = dρ ̸= 0 . (6.6)

Together with the inverse of the unphysical metric, which reads

gµν∂µ ⊗ ∂ν = ∂u ⊗ ∂ρ + ∂ρ ⊗ ∂u + ρ2(1−Rρ)∂ρ ⊗ ∂ρ + ∂ϑ ⊗ ∂ϑ +
1

sin2 ϑ
∂φ ⊗ ∂φ , (6.7)

we thus see that indeed
gµν∂µΩ∂νΩ = ρ2(1−Rρ) , (6.8)

which vanishes at the boundary I, where ρ = 0. Raising one index with the metric gives the vector field

nµ∂µ = ∂u + ρ2(1−Rρ)∂ρ , (6.9)

which restricts to ∂u on I, and so is indeed tangent to I. On I , we can use the coordinates (xa) = (u, ϑ, φ),
and in these coordinates the tangent null vector field is thus given by

na∂a = ∂u , (6.10)

while the pullback of the metric reads

gabdx
a ⊗ dxb = dϑ⊗ dϑ+ sin2 ϑ dφ⊗ dφ , (6.11)

which is indeed degenerate of signature (0,+,+), and satisfies nagab = 0.

6.2 Minkowski spacetime
A limiting case of the Schwarzschild spacetime given above is Minkowski spacetime. It can be obtained
by taking the limit R → 0. Note that this limit is well defined both for the physical metric g̃µν and the
coordinate transformation, where

lim
R→0

u = t− r − lim
R→0

R ln
( r
R

− 1
)
= t− r , (6.12)

which can easily be verified from

lim
R→0

R ln
( r
R

− 1
)
= lim

k→∞

1

k
ln(kr − 1) = 0 . (6.13)

The physical metric thus reads

g̃µνdx
µ ⊗ dxν =

1

ρ2
[
du⊗ dρ+ dρ⊗ du− ρ2du⊗ du+

(
dϑ⊗ dϑ+ sin2 ϑ dφ⊗ dφ

)]
, (6.14)

and is defined for ρ > 0. The unphysical metric

gµνdx
µ ⊗ dxν = du⊗ dρ+ dρ⊗ du− ρ2du⊗ du+

(
dϑ⊗ dϑ+ sin2 ϑ dφ⊗ dφ

)
(6.15)

is well-defined and of Lorentzian signature for all ρ ∈ R, as can be seen from the orthonormal basis

∂u +
ρ2 − 1

2
∂ρ , ∂u +

ρ2 + 1

2
∂ρ , ∂ϑ ,

1

sinϑ
∂φ . (6.16)
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Here we are in particular interested which asymptotic symmetries are generated by the ten Killing vector
fields of the Minkowski spacetime. In Cartesian coordinates (t, x, y, z), they are given by the generators
of translations

T0 = ∂t , T1 = ∂x , T2 = ∂y , T3 = ∂z , (6.17)

the rotation generators

R1 = z∂y − y∂z , R2 = x∂z − z∂x , R3 = y∂x − x∂y , (6.18)

as well as the Lorentz boosts

L1 = x∂t + t∂x , L2 = y∂t + t∂y , L3 = z∂t + t∂z . (6.19)

In the first step, we write these generators in spherical coordinates, so that they are given by

T0 = ∂t , (6.20a)

T1 = sinϑ cosφ∂r +
cosϑ cosφ

r
∂ϑ − sinφ

r sinϑ
∂φ , (6.20b)

T2 = sinϑ sinφ∂r +
cosϑ sinφ

r
∂ϑ +

cosφ

r sinϑ
∂φ , (6.20c)

T3 = cosϑ∂r −
sinϑ

r
∂ϑ , (6.20d)

R1 = sinφ∂ϑ +
cosφ

tanϑ
∂φ , (6.20e)

R2 = − cosφ∂ϑ +
sinφ

tanϑ
∂φ , (6.20f)

R3 = −∂φ , (6.20g)

L1 = r sinϑ cosφ∂t + t

(
sinϑ cosφ∂r +

cosϑ cosφ

r
∂ϑ − sinφ

r sinϑ
∂φ

)
, (6.20h)

L2 = r sinϑ sinφ∂t + t

(
sinϑ sinφ∂r +

cosϑ sinφ

r
∂ϑ +

sinφ

r cosϑ
∂φ

)
, (6.20i)

L3 = r cosϑ∂t + t

(
cosϑ∂r −

sinϑ

r
∂ϑ

)
. (6.20j)

In the next step, we transform these vector fields to the coordinates (u, ρ, ϑ, φ), and obtain

T0 = ∂u , (6.21a)

T1 = − sinϑ cosφ(∂u + ρ2∂ρ) + ρ cosϑ cosφ∂ϑ − ρ
sinφ

sinϑ
∂φ , (6.21b)

T2 = − sinϑ sinφ(∂u + ρ2∂ρ) + ρ cosϑ sinφ∂ϑ + ρ
cosφ

sinϑ
∂φ , (6.21c)

T3 = − cosϑ(∂u + ρ2∂ρ)− ρ sinϑ∂ϑ , (6.21d)

R1 = sinφ∂ϑ +
cosφ

tanϑ
∂φ , (6.21e)

R2 = − cosφ∂ϑ +
sinφ

tanϑ
∂φ , (6.21f)

R3 = −∂φ , (6.21g)

L1 = −(1 + uρ)

[
sinϑ cosφ

(
u

1− uρ
∂u + ρ∂ρ

)
− cosϑ cosφ∂ϑ +

sinφ

sinϑ
∂φ

]
, (6.21h)

L2 = −(1 + uρ)

[
sinϑ sinφ

(
u

1− uρ
∂u + ρ∂ρ

)
− cosϑ sinφ∂ϑ − sinφ

cosϑ
∂φ

]
, (6.21i)

L3 = −(1 + uρ)

[
cosϑ

(
u

1− uρ
∂u + ρ∂ρ

)
+ sinϑ∂ϑ

]
. (6.21j)

Finally, we extend the vector fields to ρ ≤ 0, and restrict them to I by setting ρ = 0. As expected, one
finds that they are indeed tangent to I, having no ∂ρ component. On I , with coordinates (u, ϑ, φ), they
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are given by

T0 = ∂u , (6.22a)
T1 = − sinϑ cosφ∂u , (6.22b)
T2 = − sinϑ sinφ∂u , (6.22c)
T3 = − cosϑ∂u , (6.22d)

R1 = sinφ∂ϑ +
cosφ

tanϑ
∂φ , (6.22e)

R2 = − cosφ∂ϑ +
sinφ

tanϑ
∂φ , (6.22f)

R3 = −∂φ , (6.22g)

L1 = −u sinϑ cosφ∂u + cosϑ cosφ∂ϑ − sinφ

sinϑ
∂φ , (6.22h)

L2 = −u sinϑ sinφ∂u + cosϑ sinφ∂ϑ +
sinφ

cosϑ
∂φ , (6.22i)

L3 = −u cosϑ∂u − sinϑ∂ϑ . (6.22j)

We now discuss the structure of these vector fields more closely. First, we pose the question which of
them correspond to supertranslations, i.e., which lie in the kernel of the induced metric gab. These are
exactly those vector fields which are proportional to the coordinate vector field ∂u, hence those generated
by the translations T0, . . . ,T3. Studying the angular dependence of these vector fields, we find that T0

is constant on the sphere, hence it corresponds to the spherical harmonic of the lowest degree l = 0.
The spatial translations T1, . . . ,T3 are similarly represented by spherical harmonics of degree l = 1. The
remaining vector fields have also angular components, i.e., they act non-trivially on the sphere. Taking
the Lie derivative of the metric (6.11), one finds that it is given by

(LR1g)ab = (LR2g)ab = (LR3g)ab = 0 , (6.23)

so that the generators of rotations act as Killing symmetries on the metric, while the Lorentz boosts satisfy

(LL1
g)ab = −2 sinϑ cosφ gab , (LL2

g)ab = −2 sinϑ sinφ gab , (LL3
g)ab = −2 cosϑ gab , (6.24)

which shows that they are conformal Killing symmetries. Neither depend on u, and so they belong to the
BMS group of asymptotic symmetries.
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