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1 Energy-momentum tensor
For the background value of the energy-momentum tensor the requirement that it is homogeneous and
isotropic leads to the perfect fluid form

T̄µν = (ρ̄+ p̄)n̄µn̄ν + p̄ḡµν = ρ̄n̄µn̄ν + p̄h̄µν , (1.1)

where ρ̄ and p̄ are the background values of the mass-energy density and pressure. Both are functions of
time. For constructing perturbations of the energy-momentum tensor, it turns out to be useful to interpret
these variables in a geometric way, which relates them to invariant properties on the energy-momentum
tensor. For this purpose it is useful to first raise one index of the background energy-momentum tensor,

T̄µ
ν = (ρ̄+ p̄)n̄µn̄ν + p̄δµν = ρ̄n̄µn̄ν + p̄h̄µν , (1.2)

so that it takes the form of an endomorphism on the tangent bundle. One then realizes that n̄µ is an
eigenvector of this endomorphism, since

T̄µ
ν n̄

ν = (ρ̄+ p̄)n̄µn̄ν n̄
ν + p̄δµν n̄

ν

= −(ρ̄+ p̄)n̄µ + p̄n̄µ

= −ρ̄n̄µ ,
(1.3)

with eigenvalue −ρ̄. We wish to retain a similar property for the perturbed energy-momentum tensor

Tµ
ν = T̄µ

ν + δTµ
ν . (1.4)

First, note that nµ is just the normalized four-velocity of the background matter (which is at rest with
respect to the co-moving observers). For the perturbed matter, we conclude the existence of an eigenvector
uµ with eigenvalue ρ,

Tµ
νu

ν = −ρuµ , (1.5)

which are described by linear perturbations of the unperturbed quantities,

ρ = ρ̄+ δρ , uµ = n̄µ + δuµ . (1.6)

Here the perturbed four-velocity is normalized with the perturbed four-metric, so that we have the relation

−1 = gµνu
µuν

= ḡµνn
µnν + δgµνn

µnν + 2ḡµνn
µδuν

= −1− 2ϕ+ 2nµδu
µ ,

(1.7)

which fixes the time component of the perturbation δuµ. Hence, one needs to treat only the spatial
components as independent. For these one defines the three-velocity vi such that the four-velocity becomes

uµ∂µ = a−1[(1− ϕ)∂η + vi∂i] . (1.8)

Lowering the indices of the energy-momentum tensor, we can finally write the full, perturbed tensor in
the form

Tµν = (ρ+ p)uµuν + pgµν + πµν , (1.9)
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where we have included the pressure, which we expand as

p = p̄+ δp (1.10)

into its background value and a perturbation, as well as the anisotropic stress πµν , which is subject to the
constraints

πµνu
ν = 0 , πµ

µ = 0 . (1.11)

Since we have defined the perturbation of the energy-momentum tensor with mixed indices, we find that
it is given by

δTµ
ν∂µ ⊗ dxν = −δρ∂η ⊗ dη − (ρ̄+ p̄)vi∂i ⊗ dη + (ρ̄+ p̄)(vi + B̃i)∂η ⊗ dxi + (δpδij + πi

j)∂i ⊗ dxj . (1.12)

2 Gauge transformations of the metric
When we studied linear perturbations of the metric around the Minkowski metric, we have seen that the
possibility to consider the metric as such a perturbation is retained under coordinate transformations of
the form

xµ 7→ x̃µ = xµ + ξµ(x) , (2.1)

provided that the components of the vector field ξµ are sufficiently small. Further, we have seen that by
considering both the original metric gµν and the transformed metric g̃µν as perturbations around the same
background metric ḡµν ,

gµν = ḡµν + δgµν , g̃µν = ḡµν + δg̃µν , (2.2)

we could relate the perturbations by

δgµν = δg̃µν + (Lξ ḡ)µν , (2.3)

up to linear order in both the metric perturbations and the vector field components, and the Lie derivative
is given by the well-known formula

(Lξ ḡ)µν = ξρ∂ρḡµν + ∂µξ
ρḡρν + ∂νξ

ρḡµρ = 2∇̄(µξν) , (2.4)

where in the last expression the indices have been lowered with the background metric. In the following
we will assume that the background metric ḡµν is given by the Friedmann-Lemaître-Robertson-Walker
metric, for which we introduced the form

ḡµνdx
µ ⊗ dxν = a2(−dη ⊗ dη + γijdx

i ⊗ dxj) (2.5)

in the last lecture, working with the conformal time η. To study its Lie derivative and thereby derive the
gauge transformation of the metric perturbation components, it is helpful to decompose ξµ in the form

ξµdx
µ = a2[−α dη + (diβ + ζi)dx

i] , diζi = 0 , (2.6)

where we introduced a factor a2 for convenience, which is related to lowering the indices with the metric.
Hence, we have decomposed the gauge transforming vector field in a similar way as the metric perturbation,
into two scalars and a divergence-free vector. The covariant derivative then decomposes as

∇̄µξνdx
µ ⊗ dxν = (∂µξν − Γ̄ρ

νµξρ)dx
µ ⊗ dxν

= a2
[
− (α′ +Hα)dη ⊗ dη + (diβ

′ + ζ ′i +Hdiβ +Hζi)dη ⊗ dxi

+ (−diα−Hdiβ −Hζi)dxi ⊗ dη + (didjβ + diζj +Hαγij)dxi ⊗ dxj
]
.

(2.7)

Its symmetric part yields the change of the metric perturbation

a−2(Lξ ḡ)µνdx
µ ⊗ dxν

= −2(α′+Hα)dη⊗dη+(−diα+diβ
′+ ζ ′i)(dη⊗dxi+dxi⊗dη)+2(didjβ+d(iζj)+Hαγij)dxi⊗dxj .

(2.8)
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Hence, by comparing this transformation with the irreducible decomposition of the metric perturbation
δgµν , and decomposing the transformed perturbation δg̃µν in the same fashion, we find that the components
are related by

ϕ = ϕ̃+Hα+ α′ , (2.9a)

ψ = ψ̃ −Hα , (2.9b)

B = B̃ − α+ β′ , (2.9c)

E = Ẽ + β , (2.9d)

Bi = B̃i + ζ ′i , (2.9e)

Ei = Ẽi + ζi , (2.9f)

Eij = Ẽij . (2.9g)

We thus see that the tensor perturbations are invariant under the gauge transformation, while this is not
the case for the other components. However, we can find a number of combinations of these components
which are gauge-invariant. Defining

Φ = ϕ+H(B − E′) +B′ − E′′ , (2.10a)
Ψ = ψ −H(B − E′) , (2.10b)
Ii = Bi − E′

i , (2.10c)

we find that these are also gauge-invariant,

Φ = Φ̃ , Ψ = Ψ̃ , Ii = Ĩi . (2.11)

Since the field equations are independent of the choice of coordinates, one may therefore expect that they
can be expressed in terms of these gauge-invariant variables. This is indeed the case and straightforward
to derive, even though not immediate.

3 Gauge transformation of the energy-momentum tensor
Similarly to the metric, the energy-momentum tensor transforms under a gauge transformation as

Tµ
ν = T̃µ

ν + (LξT̄ )
µ
ν . (3.1)

Assuming that both Tµ
ν and T̃µ

ν are expanded around the same background, we see that the perturbation
transforms by the Lie derivative of this background. Using the expressions (1.2) for the background energy-
momentum tensor and (2.6) for the gauge transformation, we can write the Lie derivative as

(LξT̄ )
µ
ν = (ρ̄+ p̄) [(Lξn̄)

µn̄ν + n̄µ(Lξn̄)ν ] + Lξρ̄n̄
µn̄ν + Lξp̄(n̄

µn̄ν + δµν ) , (3.2)

where

(Lξn̄)µdx
µ = a(α′ +Hα)dη + adiα dxi , (3.3a)

(Lξn̄)
µ∂µ = a−1(α′ +Hα)∂η + a−1(diβ′ + ζ ′i)∂i , (3.3b)
Lξρ̄ = αρ̄′ , (3.3c)
Lξp̄ = αp̄′ . (3.3d)

In summary, we thus find the Lie derivative

(LξT̄ )
µ
ν∂µ ⊗ dxν = −αρ̄′∂η ⊗ dη + (ρ̄+ p̄)(diβ′ + ζ ′i)∂i ⊗ dη − (ρ̄+ p̄)diα∂η ⊗ dxi + αp̄′∂i ⊗ dxi . (3.4)

Comparing with the perturbation (1.12) of the energy-momentum tensor, we thus find that its constituents
transform as

δρ = δ̃ρ+ αρ̄′ , (3.5a)

δρ = δ̃p+ αp̄′ , (3.5b)
vi = ṽi − diβ

′ − ζ ′i , (3.5c)
πij = π̃ij . (3.5d)
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In order to form gauge-invariant irreducible components, we decompose these relations into their irre-
ducible components and compare them with the gauge transformation (2.9) of the irreducible components
of the metric. For the density and the pressure we can then define the gauge-invariant quantities

E = δρ+ ρ̄′(B − E′) , P = δp+ p̄′(B − E′) . (3.6)

The velocity can be decomposed into a scalar and a vector part, and we define

diL+ Xi = vi + Ẽ′
i = vi + diE

′ + E′
i . (3.7)

Finally, the anisotropic stress is already gauge-invariant, and we simply decompose it into the components

πij = didjS − 1

3
△Sγij + d(iVj) + Tij . (3.8)

Note that Xi and Vi are divergence-free vectors,

diX i = diVi = 0 , (3.9)

while Tij is symmetric, trace-free and divergence-free,

T[ij] = 0 , diTij = 0 , T i
i = 0 . (3.10)

In the following, we will work with these quantities.

4 Energy-momentum conservation
As a first, simple example, we will study the energy-momentum conservation

∇µT
µ
ν = 0 . (4.1)

We start by calculating the background, which reads

∇̄µT̄
µ
νdx

ν = [ρ̄′ + 3H(ρ̄+ p̄)]dη . (4.2)

This is the well-known conservation law for a cosmological perfect fluid. In the following, we will make
use of this result in order to replace ρ̄′ in places where it appears useful. We then continue by calculating
the perturbation, which we can write in the form

δ[∇µT
µ
ν ] = ∇̄µδT

µ
ν + δΓµ

ρµT̄
ρ
ν − δΓρ

νµT̄
µ
ρ . (4.3)

The calculation is rather lengthy and thus omitted here. Decomposing the result by using the irreducible
decomposition, we find that the time component yields the scalar equation

E ′ + 3H(E + P) + (ρ̄+ p̄)(△L− 3Ψ′) = 0 . (4.4)

The spatial part splits into two parts. The pure divergence part reads

[(ρ̄+ p̄)L]′ + 4H(ρ̄+ p̄)L+ P +
2

3
△S + 2KS + (ρ̄+ p̄)Φ = 0 , (4.5)

and so depends only on the scalar perturbations. Similarly, we have a divergence-free vector part

[(ρ̄+ p̄)(Xi + Ii)]
′ + 4H(ρ̄+ p̄)(Xi + Ii) +

1

2
△Vi +KVi = 0 , (4.6)

which contains only vector perturbations. These relations will turn out to be useful later.
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5 Gauge invariance of the field equations
In the following we will not assume a priori that the field equations are given by Einstein’s equations of
general relativity, but we will assume a generic metric gravity theory, whose metric field equations can be
expressed in the form

Eµ
ν = Tµ

ν . (5.1)

We now perform a perturbative expansion of this equation, from which we obtain a background equation

Ēµ
ν = T̄µ

ν , (5.2)

as well as a linear perturbation
δEµ

ν = δTµ
ν . (5.3)

The key ingredient in perturbation theory is to first impose the background equation (5.2) and to consider
a perturbation around a solution of this equation, for which then the perturbed equation (5.3) is imposed.
For the background, we have chosen a homogeneous and isotropic solution, given by the Friedmann-
Lemaître-Robertson-Walker metric and perfect fluid energy-momentum tensor, and we have fixed the
coordinates by demanding that the metric takes a particular form. Of course, the field equations are tensor
equations, and so we could have used any other coordinates as well - we have simply made a convenient
choice. The same holds true for the perturbations. As we have seen above, fixing the coordinates for the
background still allows infinitesimal coordinate transformations, under which the background retains its
form, but the components of the perturbations change in the form of the gauge transformations we have
found. Also here we can make a convenient choice, by demanding a particular form of the perturbations,
and this is often done in different ways, depending on which aspects of cosmological perturbations are
being studied. Equivalently, one can work with the gauge-invariant variables we have introduced (or a
different linear combination thereof). It follows from general covariance of the field equations that the
perturbed equations are gauge-invariant, i.e., they do not depend on the chosen gauge, and so they can be
expressed in terms of gauge-invariant quantities. However, as we have seen above, the components of the
energy-momentum tensor and the metric, and thus presumable also of the tensor δEµ

ν , do depend on the
choice of the gauge. To resolve this apparent contradiction, recall that under an infinitesimal coordinate
transformation (of the same order as the perturbations) the two sides of the perturbed gravitational field
equations change as

δEµ
ν = δẼµ

ν + (LξĒ)µν , δTµ
ν = δT̃µ

ν + (LξT̄ )
µ
ν . (5.4)

For the background, however, we assume that the field equations (5.2) hold. In this case the two Lie
derivative terms agree, and so both sides of the field equations change by the same amount. It follows
that even though each side of the perturbed field equations undergoes a non-trivial transformation, the
equation as a whole is gauge-invariant.

6 Gauge-invariant decomposition of the Einstein equations
We now apply the gauge-invariant cosmological perturbation theory to Einstein’s equations of general
relativity,

Gµ
ν = 8πGTµ

ν , (6.1)

which we write here with mixed indices, as this is how we defined the perturbations. It is well known that
for a homogeneous and isotropic background they yield the Friedmann equations

H2 +K =
8πGa2

3
ρ̄ , 2H′ +H2 +K = −8πGa2p̄ . (6.2)

In the following, we will assume that these background equations are solved, and so we can use them to
replace ρ̄ and p̄ with the corresponding left hand sides and vice versa, at our convenience.
We now come to the perturbed field equations. We will not derive these equations, since their derivation
is rather lengthy, and only show them and their relations. We start with the tensor equations, which
are the easiest, and whose vacuum equations we derived in a previous lecture. Adding also the matter
contribution, we find the equation

E′′
ij + 2HE′

ij −△Eij + 2KEij = 8πGa2Tij . (6.3)
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As we have seen before, this equation is expressed in terms of gauge-invariant variables, since the tensor
part of the equations is in any case gauge-invariant.
We then come to the vector equations. From the field equations we obtain two independent equations,
which are given by

I ′i + 2HIi = −8πGa2Vi (6.4)

and
1

2
△Ii − (2H2 − 2H′ +K)Ii = 16πGa2(ρ̄+ p̄)Xi . (6.5)

To gain more insight into these equations, it is helpful to define the (gauge-invariant) quantity

Qi = (ρ̄+ p̄)(Xi + Ii) , (6.6)

which can be interpreted as the transverse momentum current. Combining the two equations above, one
can then find the conservation equation

Q′
i + 4HQi = −1

2
△Vi −KVi , (6.7)

which is simply the momentum conservation equation (4.6) we have found from the covariant energy-
momentum conservation. This does not come as a surprise, since the Einstein tensor satisfies the Bianchi
identity ∇µG

µ
ν = 0, and so any solution of Einstein’s equations satisfies the energy-momentum conser-

vation. Using this new variable, we can also write the remaining equation as

△Ii + 2KIi = 16πGa2Qi , (6.8)

which is now a constraint equation for Ii.
Finally, we take a brief look at the scalar equations, which are the most lengthy to derive. These can be
written in the form

3HΨ′ − 3KΨ−△Ψ+ 3H2Φ = −4πGa2E , (6.9a)

Ψ′′ + 2HΨ′ +HΦ′ + (2H′ +H2)Φ = 4πGa2
(
P +

2

3
△S

)
, (6.9b)

Ψ′ +HΦ = −4πGa2(ρ̄+ p̄)L , (6.9c)

Ψ− Φ = 8πGa2S . (6.9d)

We will not discuss these equations in detail here. However, it is helpful to remark that they can be used
to derive the conservation equations (4.4) and (4.5).
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