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1 Dynamics of a point mass
We start by studying the dynamics of a point mass of mass m. Using coordinates (xµ), its trajectory or
worldline τ 7→ γµ(τ) parametrized by an arbitrary curve parameter τ . Its dynamics is governed by the
action

S[γ] = −m

∫ √
−gµν(γ(τ))γ̇µ(τ)γ̇ν(τ)dτ . (1.1)

Note that this action is independent under the choice of the parametrization: it does not change of we
replace τ by another parameter τ ′ which is given by a monotonous function τ ′(τ). This allows us to choose
it such that the trajectory is parametrized by its arc length, i.e., such that

gµν γ̇
µγ̇ν = −1 , (1.2)

where here and from now on we suppress the arguments τ and γ(τ) in our notation. Under this choice
of parametrization the equations of motion derived from the action above take the familiar form of the
geodesic equation

γ̈µ + Γµ
νργ̇

ν γ̇ρ = 0 . (1.3)

In order to derive Newton’s equations of motion, we assume a slowly moving test mass in a weak, time-
independent gravitational field. To make these assumptions precise, we assume that the coordinates are
given by Cartesian coordinates (xµ) = (x0, xi), where x0 is the time coordinate and (xi) are spatial
coordinates. Defining the components of the velocity as

vi =
dγi

dγ0
=

dγi

dτ

(
dγ0

dτ

)−1

=
γ̇i

γ̇0
, (1.4)

the assumption of a slowly moving test mass is expressed by |vi| ≪ 1, where we have normalized the speed
of light as c = 1. Further, we assume that the metric is given by a perturbation

gµν = ηµν + hµν (1.5)

around the Minkowski metric
ηµν = diag(−1, 1, 1, 1) . (1.6)

Our aim is now to calculate the acceleration

ai =
d2γi

(dγ0)2
=

γ̈i

(γ̇0)2
. (1.7)

Expanding the geodesic equation into space and time components, we find

γ̈i = −Γi
00(γ̇

0)2 − 2Γi
0j γ̇

0γ̇j − Γi
jkγ̇

j γ̇k ≈ −Γi
00(γ̇

0)2 , (1.8)

where in the approximation we have made use of the assumption |γ̇i| ≪ |γ̇0| of slow motion to keep only
the leading order term in the expansion. Hence, we can write the acceleration as

ai = −Γi
00 =

1

2
δij∂jh00 , (1.9)
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where also on the right hand side we have kept only the lowest order term in hµν and further used the
assumption that the gravitational field is time-independent, in order to neglect the time derivative ∂0h0j .
Finally, identifying the metric perturbation with the Newtonian potential U as

h00 = 2U , (1.10)

we see that we find Newton’s equations of motion

ai = ∂iU (1.11)

for a slowly moving point mass in a weak, time-independent gravitational field.

2 Energy-momentum and Euler equations
We continue by studying the dynamics of a perfect fluid, which is described by the energy-momentum
tensor

Tµν = (ρ+ p)uµuν + pgµν , (2.1)

and thus characterized by its density ρ, pressure p and four-velocity uµ at every spacetime point. Here
the four-velocity is normalized such that

gµνu
µuν = −1 , (2.2)

As for the point mass discussed above, we will assume that the fluid is moving slowly in a chosen Cartesian
coordinate system, so that we have

vi =
ui

u0
, |vi| ≪ 1 . (2.3)

Under this assumption, the normalization condition becomes

−1 = g00(u
0)2 + 2g0iu

0ui + giju
iuj = (u0)2

(
−1 + h00 + 2h0iv

i + v2 + hijv
ivj

)
≈ −(u0)2 , (2.4)

giving u0 ≈ 1 and thus ui ≈ vi at the leading order, which will turn out to be sufficient for our following
derivation. Further, we assume that the pressure is of the same order of magnitude as the kinetic energy
density, and so

p ∼ ρv2 ≪ ρ . (2.5)

Under these assumptions, the energy-momentum tensor has the leading order components

T 00 ≈ ρ , T 0i ≈ ρvi , T ij ≈ ρvivj + pδij . (2.6)

The dynamics of the fluid is described by the energy-momentum conservation law

0 = ∇µT
µν = ∂µT

µν + Γµ
ρµT

ρν + Γν
ρµT

µρ , (2.7)

which we now decompose into its space and time components. We start with the time component, which
reads at leading order

0 ≈ ∂0T
00 + ∂iT

i0 ≈ ∂0ρ+ ∂i(ρv
i) . (2.8)

Here we have neglected all terms involving Christoffel symbols, since they contain derivatives of hµν . We
see that the result resembles the continuity equation of a classical fluid. For the spatial part, we assume
that the kinetic and potential energies of the fluid are or the same order of magnitude, and hence

h00 = 2U ∼ v2 . (2.9)

At the lowest order, we thus retain one Christoffel symbol, and find

0 ≈ ∂0T
0i + ∂jT

ji + Γi
00T

00 = ∂0(ρv
i) + ∂j(ρv

ivj + pδij)− ρ∂iU . (2.10)

We can further use the continuity equation (2.8) to eliminate ∂0ρ and find

0 ≈ ρ∂0v
i + ρvj∂jv

i + ∂ip− ρ∂iU . (2.11)
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This is the Euler equation of motion for a fluid. We can also rewrite these two equations by introducing
the time derivative

d

dt
= ∂0 + vi∂i (2.12)

along the flow lines of the fluid. Then the continuity equation (2.8) becomes

dρ

dt
+ ρ∂iv

i = 0 , (2.13)

while the Euler equation (2.11) reads

ρ
dvi

dt
+ ∂ip− ρ∂iU = 0 . (2.14)

3 Newtonian limit of general relativity
We finally take a look at the weak field, slow motion expansion of the gravitational field equations of
general relativity, given by the Einstein equations

Rµν − 1

2
Rgµν = 8πGTµν . (3.1)

It turns out to be simpler to trace-reverse this equation first. Taking the trace on both sides, one finds

R− 2R = 8πGT , (3.2)

and so R = −8πGT . We can thus shift the second term from the left hand side to the right hand side,
after which we obtain

Rµν = 8πG

(
Tµν − 1

2
Tgµν

)
. (3.3)

In the following, only the time component of this equation will be relevant. On the left hand side, a weak
field approximation yields

R00 = −1

2
∂i∂ih00 = −△U , (3.4)

where we have also assumed that we can neglect time derivatives, and introduced the Laplace operator.
On the right hand side, the leading order is given by

T00 −
1

2
Tg00 =

1

2
ρ . (3.5)

We thus find
△U = −4πGρ , (3.6)

which is the well-known Poisson equation for the Newtonian gravitational potential.
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