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1 Preliminaries
In the following we use Cartesian coordinates (xµ) = (t, xi) and denote partial derivatives with respect to
these coordinates by

A,µ =
∂A

∂xµ
, A,0 =

∂A

∂t
, A,i =

∂A

∂xi
. (1.1)

The total time derivative is given by

dA

dt
=
∂A

∂t
+ vi

∂A

∂xi
= A,0 + viA,i . (1.2)

2 Post-Newtonian bookkeeping
Purpose of the parametrized post-Newtonian (PPN) formalism1 is to provide a universal procedure for
testing gravity theories using observations in the solar system. Necessary condition to apply the formalism
to a gravity theory is that the theory models the spacetime geometry by a metric gµν and that the motion
of test masses within this geometry follows geodesics. The gravitational field equations of the theory in
question determine the metric gµν depending on the distribution of gravitating source matter, which in
turn determines the motion of test masses. Both the matter distribution in the solar system and the
motion of its constituents can be measured. The combination of these measurements then provides a test
for the gravitational field equations of the theory in question.
We assume that all masses in the solar system move at small velocities |~v| � c ≡ 1. The action for the
motion of a test mass m0 then takes the form

S = −m0

∫ √
−gµν ẋµẋνdt = −m0

∫ √
−g00 − 2g0ivi − gijvivjdt . (2.1)

This expression has the form of a perturbative expansion in the velocity ~v. We further assume that the
gravitational field is weak, so that we can approximate the metric in the form

gµν = ηµν + hµν (2.2)

as an expansion around the flat Minkowski metric. It follows from the structure of the action (2.1) that
perturbations of the component g00 have a stronger influence on the motion of test masses than gij , since
the latter is suppressed by a factor v2. The perturbation hµν is thus further divided into velocity orders

hµν =
1

hµν +
2

hµν +
3

hµν +
4

hµν +O(5) , (2.3)

where each term
n

hµν ∼ |~v|n is of order O(n). It turns out that in the Newtonian limit the only relevant
and non-vanishing term in this expansion is

2

h00, while in the post-Newtonian limit we consider here also
2

hij ,
3

h0i,
4

h00 are necessary.
We further assume that the gravitational field equations are of the form

Kµν = 8πTµν , (2.4)
1Here we use the formalism as given in [1]. A modified version is given in [3], which uses different conventions for the

matter variables and PPN potentials.
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where Kµν is a geometric curvature tensor which depends on the metric gµν and vanishes for a flat
Minkowski metric. Through the perturbative expansion (2.2) and (2.3) it decomposes into terms K(n)

µν of
velocity order O(n). We thus need a similar decomposition of the energy-momentum tensor, for which we
assume a perfect fluid form

Tµν = (ρ+ ρΠ + p)uµuν + pgµν (2.5)

with rest energy density ρ, internal energy density ρΠ, pressure p and four-velocity uµ. Based on their
values in the solar system we assign velocity orders ρ ∼ Π ∼ O(2) and p ∼ O(4). Together with the
velocity components vi = ui/u0 we then find the decomposition of the energy-momentum tensor in the
form

T00 = ρ
(

1 + Π + v2 −
2

h00

)
+O(6) , (2.6a)

T0j = −ρvj +O(5) , (2.6b)
Tij = ρvivj + pδij +O(6) . (2.6c)

Since all changes of metric components and the matter source over time are induced by motions of the
source matter with velocity |v| we further weight all time derivatives with another factor O(1).

3 Metric ansatz
In order to solve generic gravitational field equations of the form (2.4) one uses the metric ansatz

2

h00 = 2αU , (3.1a)
2

hij = 2γUδij , (3.1b)
3

h0i = −1

2
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vi −

1

2
(1 + α2 − ζ1 + 2ξ)Wi , (3.1c)

4

h00 = −2βU2 − 2ξΦW + (2 + 2γ + α3 + ζ1 − 2ξ)Φ1 + 2(1 + 3γ − 2β + ζ2 + ξ)Φ2 (3.1d)
+ 2(1 + ζ3)Φ3 + 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A .

The quantities U, Vα,Wα,ΦW ,Φ1, . . . ,Φ4,A are the PPN potentials, which are Poisson-like integrals over
the source matter distribution of the form

χ = −
∫

d3x′ρ′|~x− ~x′| ∼ O(2) , (3.2a)

U =

∫
d3x′

ρ′

|~x− ~x′|
∼ O(2) , (3.2b)

Uij =

∫
d3x′

ρ′

|~x− ~x′|3
(xi − x′i)(xj − x′j) = χ,ij −

1

2
4χδij ∼ O(2) , (3.2c)

Vi =

∫
d3x′

ρ′v′i
|~x− ~x′|

∼ O(3) , (3.2d)

Wi =

∫
d3x′

ρ′v′j(xi − x′i)(xj − x′j)
|~x− ~x′|3

∼ O(3) , (3.2e)

Φ1 =

∫
d3x′

ρ′v′2

|~x− ~x′|
∼ O(4) , (3.2f)

Φ2 =

∫
d3x′

ρ′U ′

|~x− ~x′|
∼ O(4) , (3.2g)

Φ3 =

∫
d3x′

ρ′Π′

|~x− ~x′|
∼ O(4) , (3.2h)

Φ4 =

∫
d3x′

p′

|~x− ~x′|
∼ O(4) , (3.2i)

A =

∫
d3x′

ρ′ [v′i(xi − x′i)]
2

|~x− ~x′|3
∼ O(4) , (3.2j)
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B =

∫
d3x′

ρ′

|~x− ~x′|
(xi − x′i)

dvi
dt
∼ O(4) , (3.2k)

ΦW =

∫
d3x′

∫
d3x′′ρ′ρ′′

xi − x′i
|~x− ~x′|3

(
x′i − x′′i
|~x− ~x′′|

− xi − x′′i
|~x′ − ~x′′|

)
∼ O(4) , (3.2l)

where we used the notation ρ′ = ρ(t, ~x′) and similar for matter variables ρ,Π, p, vi or PPN potentials
evaluated at points ~x′ or ~x′′. They appear as generic solutions to the field equations of gravity theories,
since they satisfy the Poisson-like equations

44χ = 8πρ , 44A = 8π(ρvavb),ab − 4π4(ρv2) , 44B = 8π[4p− (U,aρ),a] ,

4Φ1 = −4πρv2 , 4Φ2 = −4πρU , 4Φ3 = −4πρΠ , 4Φ4 = −4πp , (3.3)
4U = −4πρ , 4Va = −4πρva , 4ΦW = 4πρU − 4U,aU,a + 2U,abχ,ab .

The constant α, which corresponds to the effective gravitational constant, is conventionally set to 1. The
remaining constants β, γ, α1, . . . , α3, ζ1, . . . , ζ4, ξ are the PPN parameters, which are characteristics of the
theory under consideration. They are determined by a perturbative solution of the field equations (2.4).
For general relativity they take the values

γ = β = 1 , α1 = . . . = α3 = ζ1 = . . . = ζ4 = ξ = 0 . (3.4)

By experimentally probing the spacetime geometry in the solar system through various effects these PPN
parameters can also be measured. Comparing the theoretical values obtained from a particular theory
with the measured values then allows testing the viability of this theory.

4 Physical interpretation of the PPN parameters
The coefficients of the terms in the metric (3.1) are chosen as linear combinations of PPN parameters in
a particular way so that the PPN parameters can be interpreted by different physical effects.

4.1 γ

The PPN parameter γ describes how much spatial curvature is produced per unit mass. This spatial
curvature can be measured, for example, by the deflection of light. A light ray passing by a mass m at a
distance d is deflected by the angle

δθ = (1 + γ)(1 + cos θ0)
m

d
, (4.1)

where θ0 is the angular separation between the observed light ray and the line of sight towards the
deflecting mass.
Another method is to measure the time delay of a light or radio signal on its way from Earth to a planet
or spacecraft and back, typically using the solar mass m = M�. In solar centered coordinates, ~x� = 0,
the two-way travel time of a radio signal is given by

∆t = 2|~x⊕ − ~xr|+ δt = 2|~x⊕ − ~xr|+ 2(1 + γ)m ln
(r⊕ + ~x⊕ · n̂)(rr − ~xr · n̂)

d2
, (4.2)

where ~x⊕ is the position of the Earth, ~xr is the position of the reflector, r⊕ = |~x⊕| and rr = |~xr| are their
distances from the Sun, n̂ is the direction of the photon on its return flight and d is the distance at which
the signal passes by the Sun. The time delay δt is maximal when the reflector is in superior conjunction,
i.e., straight behind the Sun, in which case

δt = 2(1 + γ)m ln
4r⊕rr
d2

. (4.3)

This method has been used by the Cassini experiment, in which d = 1.6r� and rr = 8.43AU. The resulting
value of γ obtained from this experiment is γ − 1 = (2.1± 2.3) · 10−5 [2].
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4.2 β

The PPN parameter β measures the non-linearity in the Newtonian law of gravity. It can be measured, for
example, by the perihelion precession of Mercury. The integrated perihelion shift over one orbital period
of Mercury is given by

∆ω̃ =
6πm

p

[
2 + 2γ − β

3
+

2α1 − α2 + α3 − 2ζ2
6

µ

m
+ J2

R2

2mp

]
, (4.4)

where m is the solar mass, µ is the mass of Mercury, p is the perihelion distance of Mercury from the Sun,
J2 is the solar quadrupole moment and R is the solar radius. The second term can be neglected since

µ

m
=
M'
M�

≈ 2 · 10−7 . (4.5)

Currently the best bound obtained from experiments is given by |2γ − β − 1| < 3 · 10−3 [2].

4.3 ξ

The PPN parameter ξ introduces a term into the Lagrangian of an n-body system of the form

Lξ = −ξ
2

∑
i,j

mimj

r3ij
~rij ·

[∑
k

mk

(
~rjk
rik
− ~rik
rjk

)]
. (4.6)

As a consequence, the Newtonian law for the interaction between two bodies acquires a dependence on
their location relative to other gravitating bodies. This term therefore violates local position independence.

4.4 Violation of Lorentz invariance
The metric (3.1) is in general not invariant under local Lorentz transformations [1]. Transformation of
this metric to a system which is moving with a relative velocity ~w introduces terms into the metric which
explicitly depend on ~w. However, these terms have coefficients which are linear combinations of the
parameters α1, α2, α3. They therefore vanish for α1 = α2 = α3 = 0. These parameters thus measure the
violation of Lorentz invariance.

4.5 Violation of total energy-momentum conservation
The local covariant energy-momentum conservation ∇µTµν has the post-Newtonian approximation

0 = ∇µTµ0 = ρ,0 + (ρvi),i +O(5) , (4.7a)

0 = ∇µTµi = ρ
dvi
dt

+ p,i − ρU,i +O(6) . (4.7b)

These conservation laws are satisfied independent of the theory of gravity, because they are a consequence
of the diffeomorphism invariance of the matter action.
In contrast, global conservation laws concern the conservation of the total energy-momentum of a gravi-
tating system in an asymptotically flat spacetime. These depend both on the matter and gravity theories.
In the post-Newtonian approximation the conservation of the total energy-momentum is given only if
the local conservation laws can be integrated to global conservation laws. The integrability condition
involves the PPN parameters. It can be shown that the local conservation laws are integrable only for
α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0 [1]. These parameters thus measure the violation of total energy-momentum
conservation.
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