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1 Connections and metric-affine geometry
So far we have considered the metric gµν as the field which defines the spacetime geometry, possibly
together with other tensor fields, and performed a perturbative expansion of these tensor fields. However,
there exists also the possibility to consider an affine connection as a fundamental field which defines the
spacetime geometry, which is thus not a tensor field. Also in this case one can perform a perturbative
expansion, which we shall study now.

1.1 Definition
In Riemannian geometry, which is the geometric foundation of general relativity, we are used to encoun-
tering the Levi-Civita connection of the metric gµν , whose coefficients are given by

◦
Γµνρ =

1

2
gµσ(∂νgσρ + ∂ρgνσ − ∂σgνρ) , (1.1)

where we now use a circle on
◦
Γµνρ and all of its derived quantities, in order to distinguish it from other

connections which we will encounter in this lecture. The coefficients of the Levi-Civita connection are also
called the Christoffel symbols, and they define the covariant derivative of a vector field Xµ as

◦
∇µXν = ∂µX

ν +
◦
ΓνρµX

ρ . (1.2)

In general, we can understand an affine connection as a geometric object, which defines the covariant
derivative of a tensor field, such that this becomes another tensor field. For a general connection, we
retain the same form of the covariant derivative

∇̂µXν = ∂µX
ν + Γ̂νρµX

ρ , (1.3)

but with arbitrary coefficients, which we now write as Γ̂µνρ. In order for ∇̂µXν to transform as a tensor
field under coordinate transformations (xµ) 7→ (x̃µ), the connection coefficients must transform as

Γ̂µνρ = Γ̂′αβγ
∂xµ

∂x′α
∂x′β

∂x′ν
∂x′γ

∂x′ρ
+
∂xµ

∂x′α
∂2x′α

∂x′ν∂x′ρ
, (1.4)

and so they do not constitute the components of a tensor field, due to the appearance of an inhomogeneous
term. We can, however, obtain several tensor fields from a connection. The most familiar one, as it appears
in general relativity, is the curvature. For a general connection, it is given by

R̂ρσµν = ∂µΓ̂ρσν − ∂ν Γ̂ρσµ + Γ̂ρτµΓ̂τ σν − Γ̂ρτν Γ̂τ σµ . (1.5)

Another important tensor field is the torsion, defined by

T̂µνρ = Γ̂µρν − Γ̂µνρ . (1.6)

Finally, if one also has a metric in addition to the connection, one enters the realm of metric-affine
geometry. In this case one may define another tensor field, called the nonmetricity, given by

Q̂ρµν = ∇̂ρgµν . (1.7)
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In general, none of these tensors vanish. The Levi-Civita connection, however, is a special case; it is the
unique affine connection, which satisfies the conditions

◦
Tµνρ =

◦
Γµρν −

◦
Γµνρ (1.8)

and
◦
Qρµν =

◦
∇ρgµν (1.9)

of vanishing torsion and nonmetricity. Finally, given a metric, one may decompose the coefficients Γ̂µνρ
uniquely in the form

Γ̂ρµν =
◦
Γρµν + K̂ρ

µν + L̂ρµν , (1.10)

where we have introduced the contortion tensor

K̂µ
νρ =

1

2

(
T̂ν

µ
ρ + T̂ρ

µ
ν − T̂µνρ

)
, (1.11)

as well as the disformation tensor

L̂µνρ =
1

2

(
Q̂µνρ − Q̂νµρ − Q̂ρµν

)
. (1.12)

Note that these two tensor fields are defined only if both a metric and an affine connection are present,
since the metric is required in order to raise and lower indices on the torsion and nonmetricity. For the
Levi-Civita connection, they vanish,

◦
Kρ

µν =
◦
Lρµν = 0 , (1.13)

which is obvious from the definition.

1.2 Perturbations
We now consider an affine connection, whose coefficients are given as a linear perturbation

Γ̂µνρ = ˆ̄Γµνρ + δΓ̂µνρ , (1.14)

where ˆ̄Γµνρ denote the coefficients of a background connection, while δΓ̂µνρ are given as the difference of
connection coefficients, and so they form the components of a tensor field. One can now easily calculate
the perturbations of the derived tensor fields which we showed above. The most straightforward is the
torsion (1.6), for which we find

δT̂µνρ = δΓ̂µρν − δΓ̂µνρ . (1.15)

We then continue with the curvature (1.5). Since here we consider only linear perturbations, we find

δR̂ρσµν = ˆ̄∇µδΓ̂ρσν − ˆ̄∇νδΓ̂ρσµ + ˆ̄TωµνδΓ̂
ρ
σω . (1.16)

Finally, we come to the nonmetricity. Here we assume that also the metric is given in the form

gµν = ḡµν + δgµν (1.17)

as a linear perturbation around a background metric ḡµν . Considering the perturbations of the metric
and the affine connection to be independent of each other, and keeping only terms up to the linear order
in either perturbation, we then find that the perturbation of the nonmetricity is given by

δQ̂ρµν = ˆ̄∇ρδgµν − δΓ̂σµρḡσν − δΓ̂σνρḡµσ . (1.18)

Similar rules can also be derived for the covariant derivative of other tensor fields.
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1.3 Gauge transformations
We now perform an infinitesimal coordinate transformation of the form

xµ 7→ x′µ = xµ + ξµ(x) , (1.19)

where we assume that the coefficients ξµ of the gauge transforming vector field are sufficiently small to
retain the linear perturbation of the geometry. From the transformed connection coefficients, we define
the perturbation by subtracting the same background as for the original connection, hence

Γ̂′µνρ = ˆ̄Γµνρ + δΓ̂′µνρ . (1.20)

We can insert this perturbation and the coordinate change in the transformation (1.4) and find that, at
linear order in ξµ, the change of the connection is given by

δΓ̂µνρ − δΓ̂′µνρ = (Lξ ˆ̄Γ)µνρ

= ξσ∂σ
ˆ̄Γµνρ − ∂σξµ ˆ̄Γσνρ + ∂νξ

σ ˆ̄Γµσρ + ∂ρξ
σ ˆ̄Γµνσ + ∂ν∂ρξ

µ

= ˆ̄∇ρ ˆ̄∇νξµ − ξσ ˆ̄Rµνρσ − ˆ̄∇ρ(ξσ ˆ̄Tµνσ) .

(1.21)

Here we find the Lie derivative of the connection coefficients, as their change under an infinitesimal
coordinate transformation. Note that this is again a tensor field [Yan57], which can be seen by the last
line, where we have expressed it in terms of the tensors we introduced earlier. This is consistent with the
left hand side of the equation above, since the difference between two tensor fields must again be a tensor
field.

2 Tetrads and teleparallel geometry
Another possible description of geometry, which makes use of a different connection as laid out above, is
used in teleparallel theories of gravity [AP13]. In the conventional formulation of these theories, one uses
a tetrad and a spin connection as fundamental fields, and then studies their perturbation. We will now
see hoe to relate these approaches.

2.1 Definition
The definition of teleparallel geometry we use here will follow the discussion of metric-affine geometry
above, and is known as the Palatini approach. Hence, we will assume that the fundamental fields are a
metric gµν and an affine connection, whose coefficients we will now denote as

•
Γµνρ to distinguish it from

the most general connection which we introduced above. The teleparallel connection is characterized by
two additional conditions, namely vanishing curvature, and

•
Rρσµν = ∂µ

•
Γρσν − ∂ν

•
Γρσµ +

•
Γρτµ

•
Γτ σν −

•
Γρτν

•
Γτ σµ ≡ 0 , (2.1)

as well as compatibility with the metric, hence vanishing nonmetricity
•
Qρµν =

•
∇ρgµν ≡ 0 . (2.2)

While this definition is suitable for most use cases, one mostly finds a different approach in the literature.
One fundamental field in this approach is the tetrad θa = θaµdxµ, where a = 0, . . . , 3 is a Lorentz index.
Hence, one may interpret the tetrad as a collection of one-forms, labeled by a. One further demands that
at every point of the spacetime manifold these one-forms constitute a basis of the cotangent space; hence,
there exists an inverse ea = ea

µ∂µ which is uniquely determined from θa by the condition

ea
µθbµ = δba , ea

µθaν = δµν . (2.3)

Demanding this basis to be orthonormal with respect to the metric,

ea
µeb

νgµν = ηab , (2.4)
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where ηab = diag(−1, 1, 1, 1) is the Minkowski metric, then uniquely determines the metric in terms of the
tetrad as

gµν = ηabθ
a
µθ
b
ν . (2.5)

The second fundamental field used in this formulation of teleparallel geometry is the spin connection
•
ωab =

•
ωabµdxµ. It can be related to the affine connection by the “tetrad postulate”, which states that the

total derivative
∂µθ

a
ν +

•
ωabµθ

b
ν −

•
Γρνµθ

a
ρ = 0 (2.6)

should vanish. This means that the affine connection is determined from the tetrad and the spin connection
as

•
Γµνρ = ea

µ
(
∂ρθ

a
ν +

•
ωabρθ

b
ν

)
. (2.7)

This relation also poses certain restrictions on the spin connection. The condition (2.1) of vanishing
curvature means that the spin connection must satisfy

•
Rabµν = ∂µ

•
ωabν − ∂ν

•
ωabµ +

•
ωacµ

•
ωcbν −

•
ωacν

•
ωcbµ ≡ 0 , (2.8)

while the metric compatibility (2.2) means that it must be antisymmetric,

•
Qµab = −ηac

•
ωcbµ − ηcb

•
ωcaµ ≡ 0 . (2.9)

Given a tetrad θaµ and a spin connection •
ωabµ satisfying the conditions (2.8) and (2.9), these uniquely

define the metric and affine connection via the relations (2.5) and (2.5). The converse, however, is not
true. Any other tetrad θ′aµ yields the same metric (2.5), if and only if these tetrads are related by a local
Lorentz transformation Λab via

θ′aµ = Λabθ
b
µ , (2.10)

where Λbb must satisfy
ηabΛ

a
cΛ

b
d = ηcd . (2.11)

Once the tetrad is chosen, also the spin connection is uniquely determined from the tetrad and the affine
connection as

•
ωabµ = eb

ν(
•
Γρνµθ

a
ρ − ∂µθaν) , (2.12)

which is simply another possibility to rearrange the tetrad postulate (2.6). It then follows that choosing
another tetrad θ′aµ, which is related to the tetrad θaµ via the Lorentz transformation (2.10), one obtains
the same affine connection

•
Γµνρ if and only if one also transforms the spin connection as

•
ω′abµ = Λac(Λ

−1)db
•
ωcdµ + Λac ∂µ(Λ−1)cb . (2.13)

Hence, the freedom of choosing the tetrad and spin connection to represent a given metric and teleparallel
affine connection amounts exactly to local Lorentz transformations. Finally, it follows from the flatness
and metric compatibility of the spin connection that (at least locally) one can always choose a local Lorentz
transformation such that the spin connection vanishes, •

ωabµ ≡ 0. This choice is known as the Weitzenböck
gauge. In the following, we will be working in this Weitzenböck gauge for simplicity. In this case the
tetrad is determined up to a global Lorentz transformation, and it is the only fundamental field, which in
turn defined the metric and affine connection.

2.2 Perturbations
Following the introduction above, we now consider a tetrad θaµ which is given as a perturbation around
a background tetrad θ̄aµ as

θaµ = θ̄aµ + δθaµ . (2.14)

We could now develop the perturbation theory for the perturbation δθaµ, as we have done for other fields.
However, in practice it turns out that it is more convenient to express the perturbation through another
field, which is given by

τµν = ηabθ̄
a
µδθ

b
ν . (2.15)
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Note that since the tetrad perturbation δθaµ has 16 independent components, the same holds for τµν ,
i.e., all of its components are independent. To see its usefulness, we calculate the perturbation of the
metric (2.5), and find that it is given by

δgµν = 2τ(µν) . (2.16)

This can be used for calculating the linear perturbation of the Levi-Civita connection. As we have seen
in a previous lecture, the latter can most easily be expressed as the covariant derivative of the metric
perturbation, and thus reads

δ
◦
Γρµν =

1

2
ḡρσ

( ◦

∇̄µδgσν +
◦

∇̄νδgµσ −
◦

∇̄σδgµν
)

= ḡρσ
( ◦

∇̄µτ(σν) +
◦

∇̄ντ(µσ) −
◦

∇̄στ(µν)
)
. (2.17)

For the teleparallel affine connection (2.5) we find the formula

δ
•
Γµνρ =

•

∇̄ρτµν , (2.18)

where the index of τµν has been raised with the background metric. Hence, we see that we can easily
express the perturbations of relevant geometric objects with the perturbation field τµν . Also we now see
how this perturbation can be related to the metric-affine description of teleparallel geometry which we
started from, based on a metric gµν and a flat, metric compatible affine connection

•
Γµνρ. Recall that

for a general connection, the perturbation of the curvature is given by the relation (1.16), so that this
expression must vanish in the case of a teleparallel affine connection. Indeed, we find

δ
•
Rρσµν =

•

∇̄µδ
•
Γρσν −

•

∇̄νδ
•
Γρσµ +

•

T̄ωµνδ
•
Γρσω

=
•

∇̄µ
•

∇̄ντρσ −
•

∇̄ν
•

∇̄µτρσ +
•

T̄ωµν
•

∇̄ωτρσ
=

•
Rρωµντ

ω
σ −

•
Rωσµντ

ρ
ω

= 0 ,

(2.19)

since the curvature of the teleparallel connection vanishes. Similarly, for the nonmetricity we use the
relation (1.18) to find the perturbation

δ
•
Qρµν =

•

∇̄ρδgµν − δ
•
Γσµρḡσν − δ

•
Γσνρḡµσ

= 2
•

∇̄ρτ(µν) −
•

∇̄ρτνµ −
•

∇̄ρτµν
= 0 ,

(2.20)

so that the perturbation retains also the vanishing nonmetricity.

2.3 Gauge transformations
As we have seen for tensor fields and connections, we can also perform a gauge transformation of a
perturbation in the teleparallel geometry. To obtain a formula for the different expressions which we have
studied above, recall that the geometry (in the Weitzenböck gauge) is defined by the tetrad. Hence, we
must study how it transforms under infinitesimal diffeomorphisms, generated by a vector field ξµ. Since
it is a tensor field, constituted by one-forms, it must transform with the Lie derivative

θaµ = θ′aµ + (Lξ θ̄)aµ , (2.21)

where only terms of at most linear order in the tetrad perturbation and the vector field ξµ have been
considered; hence, the tetrad has been replaced by the background tetrad θ̄aµ in the second term. Writing
the transformed tetrad as a perturbation of the same background tetrad,

θ′aµ = θ̄aµ + δθ′aµ , (2.22)

we find that the transformation of the perturbation is given by

δθaµ − δθ′aµ = (Lξ θ̄)aµ = ξν∂ν θ̄
a
µ + ∂µξ

ν θ̄aν , (2.23)
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using the formula for the Lie derivative of a one-form. Lowering and transforming the Lorentz index with
the background geometry, and replacing the partial derivatives acting on the background tetrad and the
vector field by coefficients of the teleparallel affine connection and covariant derivatives, we find that the
perturbation tensor field changes as

τµν − τ ′µν = ηabθ̄
a
µ(δθbν − δθ′bν)

= ηabθ̄
a
µ(ξρ∂ρθ̄

b
ν + ∂νξ

ρθ̄bρ)

= ḡµρ

( •

Γ̄ρνσξ
σ + ∂νξ

ρ
)

=
•

∇̄νξµ −
•

T̄µν
ρξρ

=
◦

∇̄νξµ +
•

K̄µν
ρξρ .

(2.24)

From this result, it is now easy to derive the transformation of the metric perturbation, which is given by

δgµν − δg′µν = 2(τ(µν) − τ ′(µν)) = 2
◦

∇̄(µξν) , (2.25)

which gives the well-known formula, as one may have expected. Similarly, the connection perturbation
transforms as

δ
•
Γµνρ − δ

•
Γ′µνρ =

•

∇̄ρ(τµν − τ ′µν) =
•

∇̄ρ
•

∇̄νξµ −
•

∇̄ρ(
•

T̄µνσξ
σ) , (2.26)

which is simply the gauge transformation (1.21) of a connection with vanishing curvature.

3 Finsler functions and Finsler geometry
Finally, one may describe the geometry of spacetime also by considering fields which are not defined on the
spacetime manifoldM itself, but on its tangent bundle TM . This is the realm of Finsler geometry [BM07].
Here we can only cover a few basic elements.

3.1 Definition
In general relativity and various other gravity theories, it is assumed that the action for a point particle
is given by its proper time, which in turn is defined via the geodesic length∫ t2

t1

√
|gµν(x(t))ẋµ(t)ẋν(t)|dt , (3.1)

in terms of the metric gµν . The basic idea of Finsler geometry is to generalize this length functional to be
of the form ∫ t2

t1

F (x(t), ẋ(t)) dt , (3.2)

where F is called the Finsler function. It is a function which depends both on the position and velocity of
the point particle, and hence may be regarded as a function on the tangent bundle TM of the spacetime
manifold M . In order for the integral (3.2) to be independent of the parametrization of the point particle
trajectory, one must demand

F (x, λẋ) = λF (x, ẋ) (3.3)
for all λ > 0. In other words, F must be a 1-homogeneous function on the tangent bundle.

3.2 Perturbations
As with the other geometric objects we studied so far, we can consider a perturbation of the Finsler
function which is of the form

F (x, ẋ) = F̄ (x, ẋ) + δF (x, ẋ) , (3.4)
where we restrict ourselves to linear perturbations. Since both F and F̄ are Finsler functions, and hence
1-homogeneous by definition, it follows that

δF (x, λẋ) = F (x, λẋ)− F̄ (x, λẋ) = λ[F (x, ẋ)− F̄ (x, ẋ)] = λδF (x, ẋ) , (3.5)

so that also the perturbation δF must be 1-homogeneous.
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3.3 Gauge transformations
We finally pose the question how the perturbation of the Finsler function changes under infinitesimal
coordinate transformations on the spacetime manifold M . For this purpose it is helpful to note that the
velocity ẋ behaves as a tangent vector, and so under a coordinate transformation x 7→ x′ it transforms as

ẋµ 7→ ẋ′µ =
∂x′µ

∂xν
ẋν . (3.6)

Hence, under the infinitesimal coordinate change generated by a vector field ξµ we have

ẋ′µ = ẋµ + ẋν∂νξ
µ . (3.7)

We then apply this transformation to the Finsler function. At linear perturbation order, we then find the
change of the perturbation as usual by the Lie derivative of the background. In the case of the Finsler
function and the infinitesimal coordinate change given above, this takes the form

δF (x, ẋ)− δF ′(x, ẋ) = ξµ
∂

∂xµ
F̄ (x, ẋ) + ẋν∂νξ

µ ∂

∂ẋµ
F̄ (x, ẋ) . (3.8)

Of course, the question arises whether this transformation is compatible with the condition that the
perturbation of the Finsler function is 1-homogeneous. This is indeed the case. It follows from Euler’s
homogeneous function theorem that ∂F̄/∂xµ is 1-homogeneous, while ∂F̄/∂ẋµ is 0-homogeneous. Since
the last term also comes with a factor ẋν , which is again 1-homogeneous, and ξµ is 0-homogeneous, since
it is a vector field on the base manifold M and does not depend on the velocity, one finds that the whole
expression is 1-homogeneous, as required.
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