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1 Inhomogeneous wave equation

The starting point for our derivation is the Einstein equation

G =8rGT,, , (1.1)
where the Einstein tensor is expressed as
1 -
G,“, == _QDI’LHV (12)
in the harmonic gauge ~
0"hu, =0, (1.3)
where 1
hyw = by — ihppmw (1.4)

is the trace-reversed metric perturbation. Hence, the equation we aim to solve is the inhomogeneous wave
equation B
Ohy = —167GTy,. (1.5)

There are different possible ways to solve this equation. The most straightforward is to employ the method
of Green’s functions. The correct choice of the Green’s function depends on the properties of the source
and the type of solution one aims to obtain. Here we will make the following assumptions:

1. The source is contained in a compact region of space.
2. There is only outgoing and no incoming radiation.

Under these assumptions, the inhomogeneous wave equation (1.5) can be solved by using the retarded
Green’s function. The solution then reads
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hw(t,f):4G/d3x’ w(t =TT 7) (1.6)

|7 — 7|

This integral converges if we assume that the source is located inside a compact domain.

2 Fourier transformation

For practical purposes it is often more convenient to consider the Fourier transform of the metric pertur-
bation and energy-momentum tensor. Here we will consider only a Fourier transform of the time domain,
which for any function f(t) can be defined as

flw) = o= [at e, (2.1)
with inverse given by
£(t) = \/% / dw f(w)e—t . (2.2)



Applied to the metric perturbation, this yields the relation
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Here we have performed various simplifications and transformations. First, we have made use of the
solution (1.6) for the metric perturbation using the Green’s function method. Then, we have defined a

new time coordinate
t=t—|7-7, (2.4)

and changed the integral from ¢ to £. In the next step we have reordered the integrals over time and space,
and grouped under the time integral only those terms which depend on time. This integral turns out to
be simply the Fourier transform of the energy-momentum tensor 7},,,, so we replaced it with TW. Finally,
we made the approximation

@7 ~r, (2.5)

where 7 is the distance between the observer at Z and the source at &/, which is based on the assumption
that the extension of the source is small compared to the distance to the observer, so that all points of
the source will be at approximately the same distance r.

3 The quadrupole formula

In the following, we will switch to upper indices again, as it will turn out to be more convenient. Recall
that in deriving the inhomogeneous wave equation (1.5) we imposed the harmonic gauge condition

0 = 9,h"" = 9oh" 4 O;h'" . (3.1)

Applying the Fourier transform to this equation, we find the relation
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Hence, once we know h’*, we can easily obtain

RO (o, 7) = %aﬁw(w,f). (3.3)



Starting from first setting the index v to a spatial index j, we obtain the mixed components, and then we
apply the same formula again with ¢ = 0 to calculate the time-time components. Hence, we only need to

calculate h*/| and can then derive all other components. To achieve this, we calculate

Ea 7:(IJ7' A
1 (w, 7) = 4GS / 32T (w, 7). (3.4)
T
Our aim is now to simplify this integral. For this purpose, note that
O ('R = §LTM 4 20T = TV 4 29, T™ (3.5)

using 9y’ = 4%. Hence, we can replace the integral by writing

/d3x’Tij(w,f’) = /dgac’ [8,’6(30”'Tkj(w,f')) — 2" (w, )| | (3.6)
where we must take the derivative 9), with respect to 2’*. Now the first term is a boundary term, and
so can be replaced by a boundary integral; however, since we assumed that the source is located inside a
compact spatial domain, this integral vanishes, since at the boundary there is vacuum. We are thus left
with only the second part. Here we use the energy-momentum conservation, which takes at the lowest

perturbation order the form
a,T"" =0. (3.7

Note that it has essentially the same form as the harmonic gauge condition (3.1), and so we can draw the
analogous conclusion

" (w, &) = iwT% (w, Z) . (3.8)

Hence, we have the formula
/d3 T (w, i) = —zw/dgaj’x”TOJ w, ) = —zw/d3 G0, 7Y, (3.9)
where the last operation, symmetrizing the indices ¢ and j, is valid since we started from a symmetric

tensor 7' , and we could have applied the same transformation to the index j instead of ;. Now we can
essentially use the same method, realizing that

O (z'2I TRy = I T 4+ 2" T%9 4 229 9), 7% | (3.10)
to replace the integral by
/de'Tij(w,f’) = z;u /d?’x' {x'ifjo(w,f') Jrz’jTio(w,:z_:”)}
- ’;" / 43z’ [a,g(x'ix'jfko (w, &) — 221 8 T (w, ;z')] (3.11)
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The integral defined the quadrupole tensor
I'(w) = / dPa'a" 1T (w, &), T7(f) = / dPa’a" T L, &) . (3.12)

With its help, the metric perturbation (3.4) finally takes the form

wwr

2 e a
hij(w, T) = —2Gw* —1I;;(w) . (3.13)
By performing the inverse Fourier transform, we can absorb the factor —w? into a second time derivative,
as well as €™ by transforming to the retarded time, following the previously used steps in reverse. Thus,
we finally arrive at the quadrupole formula



4 The binary system

We now assume a particular source of gravitational waves, namely a symmetric binary system consisting
of two equal, point-like objects of identical mass M, each on a circular orbit of radius R (so that their
distance is 2R), with angular frequency 2, given by Kepler’s law

GM
2 _
Q= ek (4.1)

The positions of these two masses are therefore given by
Za(t) = —Zp(t) = R - (cos(2),sin(Qt),0), (4.2)

where we assume the orbit in the 23 = 0 plane around the origin of the coordinate system. Assuming
point masses, the mass density is given by

TO,7) = p = M§(x*)[6(2x" — cos(Qt))d(x* — sin(Qt)) + 6(x' + cos(Qt))d(x? + sin(Qt))] . (4.3)

The quadrupole tensor (3.12) is thus given by

1+ cos(292t) sin(20Qt) 0
L;(t)= MR*>- | sin(20t)  1—cos(202t) 0] . (4.4)
0 0 0

The metric perturbation (3.14) therefore is given by

B a2 [cos(2Q(t—71))  sin(2Q(t—7r)) 0
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