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1 Newman-Penrose basis
We know from general relativity that the observable effect of gravitational waves on a set of test masses,
whose trajectories are timelike geodesics, is given by the geodesic deviation. We have seen that a suitable
coordinate system is given by Fermi coordinates around the trajectory of a given observer. Here the time
coordinate t is given by the proper time along the observer geodesic and the spatial coordinates xi are
chosen so that on the observer trajectory xi = 0, the metric is given by the Minkowski metric ηµν and the
Christoffel symbols Γµνρ vanish. In these coordinates the acceleration of a test mass is given by

d2xi

dt2
= −R0i0jx

j . (1.1)

The 6 components R0i0j of the Riemann tensor are denoted electric components.
It is convenient to use a complex double null basis of the tangent spaces introduced by Newman and
Penrose which is spanned by the vectors lµ, nµ,mµ, m̄µ given by

l = ∂0 + ∂3 , n =
1

2
(∂0 − ∂3) , m =

1√
2

(∂1 + i∂2) , m̄ =
1√
2

(∂1 − i∂2) , (1.2)

and to express tensors in terms of this basis [NP62]. For example, the Minkowski metric in this basis
takes the form

ηµν =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 . (1.3)

The diagonal elements vanish since lµ, nµ,mµ, m̄µ are null vectors, and the only non-vanishing scalar
products are nµlµ = −1 and mµm̄

µ = 1.
We now consider a plane wave propagating in the positive x3 direction, which is given by

hµν = ĥµνe
−iωlµxµ

= ĥµνe
iω(t−x3) = ĥµνe

iωu , χ = χ̂eiωu , (1.4)

where we have introduced the retarded time u = t − x3. This means that all quantities which are
constructed from the metric perturbation hµν and the perturbations χ of other gravitational fields depend
only on u. In particular we can calculate the Riemann tensor for this plane wave and find that it is fully
determined by the components in the Newman-Penrose basis given by

Ψ2 = −1

6
Rnlnl =

1

12
ḧll , Ψ3 = −1

2
Rnlnm̄ = −1

2
Rnlnm =

1

4
ḧlm̄ =

1

4
ḧlm ,

Ψ4 = −Rnm̄nm̄ = −Rnmnm =
1

2
ḧm̄m̄ =

1

2
ḧmm , Φ22 = −Rnmnm̄ =

1

2
ḧmm̄ , (1.5)

where dots denote derivatives with respect to u. Note that Ψ3 and Ψ4 are complex. From these one can
easily calculate the electric components of the Riemann tensor and see its influence on a set of test masses.
These are shown in figure 1.
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Figure 1: Effects of gravitational waves on a set of test masses, from left to right, for the wave components
Ψ4,Φ22,Ψ3,Ψ2 [Wil93, Wil14, Wil18]. For the two complex components Ψ4,Ψ3 the real part and the
imaginary part are shown separately. The colors indicate in which E(2) class which mode is present.

2 Lorentz transformation and E(2) classes
We now consider two observers located at the same point xµ = x′µ = 0 whose coordinate systems are
related by a Lorentz transform, such that both agree on the observed frequency ω and direction of the
wave. This means that the Lorentz transform must leave the retarded time u = u′ and thus the wave
vector lµ = l′µ unchanged. In the Newman-Penrose basis this Lorentz transform can be parametrized in
the form 

l′µ

n′µ

m′µ

m̄′µ

 =


1 0 0 0
αᾱ 1 ᾱeiφ αe−iφ

α 0 eiφ 0
ᾱ 0 0 e−iφ




lµ

nµ

mµ

m̄µ

 = Λ(φ, α)


lµ

nµ

mµ

m̄µ

 (2.1)

using parameters φ ∈ [0, 2π) and α ∈ C. The product of two such matrices is given by

Λ(φ′, α′)Λ(φ, α) = Λ(φ+ φ′, α′ + αeiφ
′
) , (2.2)

which shows that these Lorentz transforms form a group isomorphic to U(1) nC ∼= SO(2) nR2 = E(2), the
two-dimensional Euclidean group spanned by rotations with angle φ and translations by (<α,=α) [ELL+73b,
ELL73a].
If we apply the Lorentz transform shown above to the components of the Riemann tensor we see that they
transform as 

Ψ′2
Ψ′3
Ψ̄′3
Ψ′4
Ψ̄′4
Φ′22

 =


1 0 0 0 0 0

3ᾱ e−iφ 0 0 0 0
3α 0 eiφ 0 0 0
6ᾱ2 4ᾱeiφ 0 e−2iφ 0 0
6α2 0 4αe−iφ 0 e2iφ 0
6αᾱ 2αe−iφ 2ᾱeiφ 0 0 1




Ψ2

Ψ3

Ψ̄3

Ψ4

Ψ̄4

Φ22

 (2.3)

From these transformations we can read off some properties of the corresponding waves. Under pure
rotations α = 0 the matrix becomes diagonal and we see that Ψ2 and Φ22 have helicity 0, so they are
scalar modes; Ψ3 and Ψ̄3 have helicity ±1, so they are vector modes; Ψ4 and Ψ̄4 have helicity ±2, so they
are tensor modes; the latter are the two polarizations found in general relativity.
Decomposing the matrix above into its real and imaginary parts we see that we have constructed a six-
dimensional, real representation of the Euclidean group. This representation is not irreducible, since it
contains subspaces which are invariant under the group action. These subspaces allow a decomposition of
the full six-dimensional representation space into subsets which is invariant under Lorentz transformations.
This means that if a two observers measure a gravitational wave, they may not agree on the individual
components Ψ2,Ψ3,Ψ4,Φ22, but they agree on the subset in which this wave is located. The subsets are
as follows, and are labeled by the Petrov type of the non-vanishing Weyl tensor and by the dimension of
the corresponding representation of E(2):
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II6: 6 polarizations, all modes are allowed.

III5: 5 polarizations, Ψ2 = 0, all other modes are allowed.

N3: 3 polarizations, Ψ2 = Ψ3 = 0, tensor and breathing modes are allowed.

N2: 2 polarizations, Ψ2 = Ψ3 = Φ22 = 0, only tensor modes are allowed.

O1: 1 polarization, Ψ2 = Ψ3 = Ψ4 = 0, only breathing mode is allowed.

O0: no gravitational waves.

3 The E(2) class of gravity theories
In any theory of gravity some of these wave types may be allowed, while other may be prohibited by the
gravitational field equations. The largest set of allowed waves determines the E(2) class of the theory.

3.1 Scalar-tensor gravity
As an example, consider the linearized vacuum field equations of scalar tensor gravity given by

�ψ = 0 , Rµν = ψ,µν , (3.1)

together with the wave ansatz
hµν = ĥµνe

iωu , ψ = ψ̂eiωu . (3.2)

This ansatz already solves the field equation for the scalar field. The field equation for the metric yields

Rµν = ψ,µν = −ω2ψ̂eiωulµlν , (3.3)

so that the only non-vanishing component of the Ricci tensor is Rnn. From the wave ansatz we find the
Ricci tensor

Rnn = −ḧmm̄ , Rnm = −1

2
ḧlm , Rnm̄ = −1

2
ḧlm̄ , Rmm̄ = −1

2
ḧll (3.4)

and all other components vanish identically. The field equations thus yield

ĥlm = ĥlm̄ = ĥll = 0 , (3.5)

so that Ψ2 = Ψ3 = 0. Gravitational waves with Ψ4 6= 0 and Φ22 6= 0 solve the field equations, so that the
E(2) class of scalar tensor gravity is N3.

3.2 General relativity
From the equations above we can easily get to general relativity by setting ψ ≡ 0, so that we obtain the
vacuum Einstein equations

Rµν = 0 . (3.6)

Now also Rnn = −ḧmm̄ must vanish, so that we get Φ22 = 0. Hence, there is no scalar (breathing) mode
and the E(2) class is N2, containing only two tensor modes. Conversely, if any of the other (scalar or
vector) modes is found in nature, this would be a clear hint beyond general relativity.
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